
Tutorial: A Spatially Realistic Model of Cell

Regulatory Processes

Jose Juan Tapia and Devin Sullivan

April 29, 2014

1 Required software

This tutorial requires BioNetGen 2.2.5, RuleBender, MATLAB2013a, CellOr-
ganizer 2.1, Blender 2.70, and CellBlender 1.0 as of April 19 2014. NOTE: This
tutorial is not supported on the Windows operating system.p

2 Tutorial overview

2.1 Day 1: Spatial Modeling with CellBlender

Today you will recieve an introduction to working with spatial modeling. Using
CellBlender 1.0 and MCell you will create and run a simple biochemical system
and geometries. Lastly you will learn to import the geometries from SBML-
spatial and check that these meshes are manifold and watertight. You will be
using these complex geometries later in the workshop.

2.2 Day 2: Reaction Network Modeling with RuleBender

Using BioNetGen 2.2.5 (BNG), you will learn to model biochemical systems
using rule based modeling. You will use powerful modeling paradigm to cre-
ate and analyze ODE simulations of signal tranduction. You will then learn
how to export biochemistry from BNG to Systems Biology Markup Language
(SBML) and import it into CellBlender to create a simulation using the complex
geometries you worked on the previous day.

2.3 Day 3: Defining Complex Geometries with CellOrga-
nizer

Using CellOrganizer 2.1 you will learn to train generative models of cellular
organization from fluorescence microscopy images. Next you will learn to sample
the parameter space of your cellular models to create geometries specific to your
interests. You will then synthesize in silico instances of cellular organization

1

using these models. Lastly we will demonstrate how to import an SBML file
into CellOrganizer to automatically determine what models are required for
the biochemical system within the SBML file and synthesize instances from
those models that are exported to SBML-spatial. Lastly we will return to your
CellBlender simulations you started the previous evening to analyze the results
of these spatially realistic simulations and the impact of spatial organization on
these simulations.

3 A Brief Introduction to CellBlender

3.1 Required software

Blender 2.70, CellBlender, MCell

3.2 Installation

First download and install Blender 2.70 . Next download the most recent version
of CellBlender from https://code.google.com/p/cellblender/downloads/

list. Open Blender. Click on File, ”User Preferences”. In the ”Add Ons” tab
select ”Install from file” and select the cellblender.zip you downloaded previ-
ously. If you then search the list of Add Ons for CellBlender you will now see a
CellBlender add on that can be activated by clicking the box on the right hand
side of the list. To save this as your default click ”Save User Settings” before
exiting this window. You should now see several ”CellBlender-” sections in the
options on the right panel particularly in the ”Scene” tab.

3.3 Model description

Harris et al. present in [1] a model of receptor-mediated signaling coupled with
nuclear transport and transcriptional gene regulation. The full model is shown
in Fig. 3.3.

Throughtout this tutorial we will show the user how to implement this model
using CellBlender and various external tools. During this first day, we will
implement the reduced version shown in Fig. 3.3 which includes ligand-receptor
binding, ligand binding, ligand-receptor dimerization and TF-receptor binding.

3.4 Defining our system

Our basic system is composed of an extra-cellular matrix a cytoplasm and its
membrane. For this example model we will use a basic geometry composed of
an icosphere enveloped by a cube in CellBlender (Fig. 3.4) Name the sphere
CP (for cytoplasm) and the bounding box EC (for extra-cellular matrix)

We will be using the following reaction network:

L + R <-> L_R kp_LR,km_LR

L + L <-> L_L kp_LL,km_LL

2

http://www.blender.org/download/
https://code.google.com/p/cellblender/downloads/list
https://code.google.com/p/cellblender/downloads/list

Figure 1: Full Model diagram

Figure 2: Reduced model

3

Figure 3: Simple Geometry

TF + TF <-> TF_TF kp_TF_TF, km_TF_TF

R + TF <-> R_TF kp_R_TF,km_R_TF

And the following parameters:

NaV 6.022e8

kp_LR 0.1*NaV

km_LR 1

kp_LL 0.1*NaV

km_LL 1

kp_TF_TF 0.1*NaV

km_TF_TF 1

kp_R_TF 0.1*NaV

km_R_TF 0.1

With molecules

L (3D) diffusion: 8.52e-7

R (2D) diffusion: 3.32e-7

TF (3D) diffusion:8.52e-7

And the following release sites

{

Molecule: L

Object: EC[ALL] - CP[ALL]

4

Quantity type: Concentration/Density

Quantity: 1000 / (NaV * 20)

}

{

Molecule: R

Object: CP[ALL]

Quantity type: Concentration/Density

Quantity: 200/ 1.6

}

{

Molecule: R

Object: CP[ALL]

Quantity type: Concentration/Density

Quantity: 200/ (NaV *16)

}

3.5 Simulating your system

Under model initialization select 1000 iterations. Save you project and simulate
away!

3.6 Final thoughts for Day 1

In this exercise we have attempted to show you the difficulty of simulating
highly complex biological systems. We have developed tool that we will present
to you in the following days detailing a procedure for defining complex reaction
networks and using realistic geometries in a structured way.

4 Introduction to Compartmental Rule-Based
Modeling with BioNetGen and RuleBender

4.1 Required software

BioNetGen 2.2.5, RuleBender 2.0. JavaSE 6.

4.2 Installation

RuleBender is a graphical user interface for BioNetGen. It includes several
features like an integrated development, analysis and simulation environment
that you will learn to use during this tutorial. You can get the latest ver-
sion of RuleBender (which includes a copy of BioNetGen) from http://www.

rulebender.org.

5

http://www.rulebender.org
http://www.rulebender.org

4.3 A basic model: Ligand receptor binding

4.3.1 Glossary

This section introduces the following concepts:

• Molecule: BioNetGen’s basic simulation unit. It is a structured object
containing compartments that can be modified or bind to each other

• Species: A complex containing one or more molecules

• Rule: Rules are the generators of species in a BioNetGen model. Through
the use of patterns and wildcards, a single rule can correspond to several
reactions describing the same chemical process occurring under different
biological contexts.

4.3.2 Procedure

Related files template.bngl,lr.bngl

Objectives To teach the student the basics of how to set up a basic BioNet-
Gen file with parameters, molecule and reaction definitions and observables.

Open the template file we provided in RuleBender. A BioNetGen file is com-
prised of a model definition followed by actions. To begin the model definition
block we start with the line

begin model

The model definition is comprised of five required blocks and two optional ones.
The required blocks are parameters, molecule types, species, observables,
and reaction rules. The optional blocks, which will be covered later, are
compartments and functions.

The first step is to define the parameters we will use in the definition of our
model. These parameters can take on any numerical value, although parameters
used to define concentrations or rate constants should be non-negative. The
syntax is the following:

begin parameters

L0 1000 # Initial number of L molecules

R0 20 # Initial number of R molecules

kp1 1 # Bimolecular rate constant for L-R binding (1/# 1/s)

km1 1 # Unimolecular rate constant for L-R unbinding (1/s)

end parameters

Note that it is possible to define parameters using expressions involving previ-
ously defined parameters. This is convenient for documenting how unit conver-
sions were performed to define parameters.

The next step is to establish the set of molecules we will use in our system.
In this case, it is sufficient to define a ligand molecule (L) and a receptor (R),
each with a cognate binding site, r and l respectively:

6

begin molecule types

L(r,d)

R(l)

end molecule types

The next step is to specify the species that are initially present in the system
along with their intial concentrations, which is done in the species block:

begin species

L(r,d) L0

R(l) R0

end species

Here, the two species initially present are free ligand, an L molecule with its r
and d sites unbound, and free receptor, an R molecules with is l site unbound.
Their initial concentrations are set to R0 and L0 respectively.

Next we define the outputs of the models, which are called observables.
Observables are defined as sums over the concentrations of species selected by
a particular specified pattern or set of patterns. Patterns can be thought of
as search terms that require the matched species to have a particular set of
properties. An example observables block is:

begin observables

Molecules L_tot L()

Molecules L_free L(r)

Molecules L_bound L(r!1).R(l!1)

end observables

The first observable, L tot, computes the total number of L molecules in the
system. It does this by matching every occurence of an L molecule regardless
of the state of its r component. This illustrates the ‘don’t write don’t care’
principle in BioNetGen, which means that what we don’t include in a pattern
doesn’t affect the match. Here, the pattern matches an L but doesn’t add any
requirements on the component states, so all L molecules are matched by the
pattern. The second observable, L free, uses a pattern that lists a component
a single component, r, and by so doing requires that the matching L molecules
has an r component that is unbound. The third observable, L bound, counts
the number of L molecules that are bound to an R molecule using a more
complicated pattern that illustrates the syntax used to specify bonds. The ’ !’
after a component is used to refer the binding state, and the numerical index
that follows is used to tag the endpoints of a particular bond. Here, the bond
with index 1 links the r component of L to the l component of R. Each bond
should have exactly two enpoints. Different indices are used to refer to different
bonds. The scope of the bond indices in BNG is always a single pattern.

Rules are the central component of a BNG model, as they define what reac-
tions can take place in the system. In this simple model, the reversible binding
of L and R is specified as

7

begin reaction rules

L(r) + R(l) <-> L(r!1).R(l!1) kp1, km1

end reaction rules

The left hand side of the rule (the part before the arrow) defines the reactants
and the right hand side defines the products. Reactants and products are each
selected by patterns that may match many different species in the systems, and
thus each rule may generate many reactions. The arrow for a rule may be either
unidirectional (->) or bidirectional (<->). The rate of each generated reaction
is determined by the rate constant expression (unidirectional) or pair of rate
constant expressions (bidirectional) that are listed following the patterns. For
the models we will use in this tutorials, all reactions will follow elementary
reaction kinetics meaning that the rate is simply the product of a rate constant,
given by the specified parameter, and the reactant species concentrations. This
is the only type of reaction rate law that is currently allowed in a model that
will be imported into MCell.

Specifying the reaction rules completes our description of the model, which
we now terminate with the line

end model

The remaining lines of the BNGL (BioNetGen language) file specify actions
that are to performed on the model. If the model is to be simulated using either
ODEs or the SSA, the first action that needs to be performed is to generate the
reaction network starting from the defined species (see species block above)
and the reaction rules, by issuing the following command:

generate_network({overwrite=>1})}

Here, we have used the overwrite option to ensure that any previously gen-
erated network with the same base name will be overwritten (not necessary if
you are using RuleBender). More details about options that can be passed to
BioNetGen action commands can be found here.

The second action we want to perform is a simulation of the model using
ODEs, which we specify using

simulate({method=>"ode",t_end=>5,n_steps=>120})

This generates a single trajectory by solving the ODEs defined by the rate equa-
tions for the generated reaction network on the time interval [0,5], sampled at
120 points (not including the starting point). Fig. 4.3.2 shows this trajectory.
We can see how Lig Bound initially increases until the system reaches equilib-
rium between the forward and backward reactions.

4.4 Component states

A second way to make use of components in BNG is through the use of internal
states. A modeler can use these, for example, to represent post-translational

8

http://docs.google.com/a/cornell.edu/spreadsheet/ccc?key=0Avcdx-KzjXH4dGhLZWlZZ1VGSmYzb0ZvRG0za3RYaWc#gid=0

Figure 4: Time trajectory of a Ligand-Receptor model

modifications at a particular site or conformational states of a particular domain.
For example, we can add a phosphorylation site to the receptor molecule in our
previous example by modifying the molecule type declaration:

begin molecule types

L(r)

R(l,Y~0~P)

end molecule types

where we have indicated on the second line that the molecule R contains an
additional component Y (representing a tyrosine residue) that can be in either
the state 0 (representing unphosphorylated) or the state P (representing phos-
phorylated).

To model a phosphorylation reaction, we add the rule

begin parameters

p1 1

d1 0.1

end parameters

begin reaction rules

...

R(l!+,Y~0) -> R(l!+,Y~P) p1

end reaction rules

In this rule component T transitions from state 0 to state P. We are also
introducing some new concepts with component R(l!+). Fist, the texttt+ sym-
bol is used to indicate that we are requiring component R(l) to be bound to
some molecule without specifying which. Separately, in this rule the pattern
R(l!+) is being used as context for the rule (a precondition). In other words,
for molecule R to become phosporylated it is necessary for its component R(l)

to be bound to something.
The phosporylation rule was unidirectional, so we need to also define a de-

phosphorylation reaction. We will assume that dephosphorylation doesn’t have
a contextual requirement - here it doesn’t require binding of the ligand molecule,
so we have

9

begin reaction rules

...

R(Y~P) -> R(Y~0) d1

end reaction rules

In order to define an observable that tracks the number of phosporylated
tyrosine residues we use the following pattern syntax.

begin observables

Molecules R_Phospo_unbound R(Y~P)

Molecules R_Phospo R(Y~P!?)

end observables

The R(Y~P)!? syntax is used to indicate that we wish to count all molecules.
In contrast, the R(Y P) is used to indicate that we strictly wish to count the
cases were Y is unbound. In this particular example it bears no difference since
we have not specified any rule that defines Y to also be a binding site.

4.5 Comparmental BioNetGen

Compartments in BioNetGen (cBNGL) allow us to explicitly model the com-
partmental organization of a cell. Consider our example model we referred to
yesterday. Fig. 4.5 shows an abstract view of the hierchical structure of the
model. cBNGL syntax allows us to directly use this hierarchy inside our model
as such:

begin parameters

vol_EC 20.0

vol_CP 4.0

vol_EN 0.5

sa_PM 0.4

sa_EM 0.05

end parameters

begin compartments

EC 3 vol_EC

PM 2 sa_PM EC

CP 3 vol_CP PM

EM 2 sa_EM CP

EN 3 vol_EN EM

end compartments

Where a compartment definition syntax is composed of name,dimensions,size
and parent compartment. For the purposes of this tutorial it is important to
remember that MCell and CellBlender use units of µm3

10

Figure 5: Hierarchical view of the compartments in the example model

Once we have defined our compartments, it is possible to define any pattern
that refers to them using one of the two following syntax: @compartment:species.

For example, let us define the following additional rules to the example model
we have been working on:

begin parameters

k_r_endo 1

k_recycle 0.1

kp_LL 0.1

km_LL 1

end parameters

begin reaction rules

...

L(d) + L(d) <-> L(d!1).L(d!1) kp_LL,km_LL

@PM:R().R() -> @EM:R().R() k_r_endo

@EM:R() -> @PM:R() k_recycle

reaction rules

The first rule is a standard rule that specifies that two ligands can bind
into a single complex. In cBNGL, rules that do not contain any compartment
information imply that they can take place in any compartment where two
ligands can be found (following BioNetGen’s don’t show-don’t care principle).

The second rule specifies that whenever it finds two receptors in the plasma
mebrane, bound together in some non-specified way, they will be transported to
the endosomal membrane at a k_r_endo rate. Likewise, we specify a reciclying
reaction whereas any kind of receptors can go back to the plasma membrane.
Observables are defined in a similar manner.

begin observables

Species R_Dimers_PM @PM:R.R

Species R_Dimers_EM @EM:R.R

end observables

11

Figure 6: Time series of the example model after including compartment infor-
mation

In this block we are introducing the Species keyword. This means that, as
we described earlier, instead of counting the number of molecules where a given
pattern appears, it will count the total number of complexes (or species) and
report that to the user.

Let us simulate the system as we have defined it so far: Ligand-receptor bind-
ing, ligand-ligand dimerization, receptor phosporylation and receptor transport.
Change the simulation so that it runs ten seconds.

As we can appreciate, all elements of this simple cascade are being activated
and equilibrated (the most downstream element, endosomal receptor, reaches
equilibrum at about 8 seconds).

5 Importing external models into CellBlender

5.1 Required material

• A pre-generated spatial geometry and reaction networks encoded in the
SBML format

• CellBlender

• Plotting software

• full lr.bngl(Linux) lr full.blend (MacOSX, Win)

5.2 Systems Biology Markup Language (SBML)

SBML is a modeling exchange standard used to encode modeling information
in an XML-compliant format. Multiple modeling applications support export-
ing information as an SBML model (including BioNetGen). Moreover, recent
extensions to the SBML standard like SBML-spatial support the definition of
3D geometries. We will make use of these capabilities to define a model in
CellBlender

12

Figure 7: External model import menu

To export an SBML from a BioNetGen file, it is sufficient to add the writeSBML()
action to the bottom of your BioNetGen file.

5.3 Importing SBML

To import an SBML and SBML-spatial files created open Blender and click File,
Import, Import External Model. Navigate to the ”Motivating example.xml” file
provided by the instructors or your personal .xml SBML or SBML-spatial file
and select Import External Model. Depending on the size of your model this
may take a minute to load. Once loaded you will see imported geometries. The
”CellBlender-” sections in the Scene tab on the right Blender panel have also
been automatically filled in. As of the time of this tutorial this capability is
only supported in Linux.

5.4 Checking your meshes

Before you can simulate the biochemical system you must check that your ge-
ometries have consistent normals, are manifold and watertight. Refer to this
tutorial for more information on how to make sure your geometry is MCell
compliant

5.5 Utilizing partitioning

Although it is now possible to run your biochemical spatial simulation, you
probably want to first set up partitions. These can increase simulation speed
by greater than 1000x! Set your partitions to be 0.1 wide

13

http://www.mcell.org/tutorials/mesh_repair.html
http://www.mcell.org/tutorials/mesh_repair.html

5.6 Running CellBlender

The last step before running our simulation is to define the number of iterations
our simulation will run for. In the Model Initialization panel increase the number
of iterations to 10000.

Save your project to a new blend project file. The model’s reaction output
data will be saved to a folder called projectName_files inside the directory
where the *.blend file is located.

Now we are ready to simulate our file. Click on the run simulation panel
and start the simulation.

5.7 Visualizing and plotting data

In order to visualize your data from inside Blender it is sufficient to check the
’Visualize all’ option in the corresponding CellBlender panel. However, given
the number of molecules in the example system it is unfeasible to visually store
more than a few thousands of iterations. Of more interest is to analize the
behavior of the time series produced by the system; we will explain how to do
this in the following section.

5.7.1 Plotting reaction data

It is possible to use any plotting software to visualize the time series generated
by MCell/CellBlender, including CellBlender own plugins if you so desire. We
have provided a small Python scripts that satisfies our needs. Running it in the
directory where your react data is located will generate an image for each file
found in the directory.

6 Modeling cellular organization (CellOrganizer/SBML-
spatial)

Goal: Be able to generate synthetic geometries and SBML-spatial files from
using models learned from fluorescence microscopy images.

6.1 Required software

MATLAB2013a, CellOrganizer 2.1

6.2 Installation

Download MATLAB2013a or later and activate it using the installation wizard
[mathworks.com]. This .

Download and unzip the latest stable release of CellOrganizer[cellorganizer.org].

14

Open MATLAB and add navigate to the folder containing the cellorganizer
source code by clicking the magnefying glass on the right of the screen. Once
in this folder the cellorganizer directory will be visible on the left of the screen
in the ”CurrentFolder” block. Type setup in the Command Window.

Download the provided ”SampleData” folder. This folder contains abreviated
datasets for the puroposes of demonstration. Place this folder in the same
directory as the ”cellorganizer” parent folder. Add the ”SampleData” to your
path by right clicking it and selecting ”Add to Path”–¿”Selected Folders and
Subfolders”.

6.3 Training generative models

Related CellOrganizer demos: Train, demo2D01, demo3D11, demo3D12,
demo3D18, demo3D20

Objectives To teach the basics of how to train generative models from fluores-
cence microscopy data.

Procedure
For this tutorial we are going to train a model using 2D images of HeLa cells.
These cells have been tagged with a DNA marker, a cytoplasmic marker, and a
LAMP2 marker which localizes in lysosomes as seen in figure 6.3 below.

Open the template Train.m by typing ”edit Train” in the Command Win-
dow block. A file will open and you will see the following:

function Train(dnapath,cellpath,protpath,croppath,resolution,filename,dimensionality)

There are clearly several inputs to fill out before you can train a model so let’s
go through them in turn.

The first thing you need to do is tell CellOrganizer where your images are. To
do this specify the paths as strings like the examples below:

>> dnapath = [’./myDNAimgs/cell*.tif’];

>> cellpath = [’./myCELLimgs/cell*.tif’];

>> protpath = [’.myPROTimgs/cell*.tif’];

These paths point to the DNA, cytoplasmic, and lysosomal images respectively
for a set of cells. The ’*’ wildcard allows you to specify paths with partial
patterns. WARNING: If you do not have consistent file names between
folders/patterns you may want to list out each file. This will prevent
files from becoming mismatched. To do this list the paths in a cell
array.

>>dnapath = {’./myDNAimgs/cell1.tif’,...

15

Figure 8: LAMP2 tagged HeLa cell

16

’./myDNAimgs/cell2.tif’,...

’./myDNAimgs/cell3.tif’};

It is often useful to specify a cropped region of an image on which to train to
avoid noise, artifacts or other cells in different parts of an image that you are
not interested in such as the partial cells visible in the bottom of 6.3. To do
this you will need to specify the croppath that points to a binary mask of your
region of interest as well.

>>croppath = [’./crop/cell*.tif’];

(If you do not have a mask image, simply enter croppath = [])

You must next specify the resolution at which these images were taken. This is
a key part of the model when we want to combine models learned at different
resolutions. For the dataset provided in the tutorial, the

resolution = [0.05,0.05]} microns/pixel.

The filename input is a string pointing to where you wish to save the model for
example:

>>filename = ’./tutorialModel’;

For the purposes of this tutorial you will be training a 2D generative model on
three cells due to time constraints, so set dimensionality = ’2D’. In the fu-
ture, to perform 3D training simply set {dimensionality = ’3D’} and change
the filepaths to a 3D dataset(see demo3D11).

You are now ready to train a generative model. Use the command

>>Train(dnapath,cellpath,protpath,croppath,resolution,filename,dimensionality)

Additonally a diffeomorphic model may be trained with the inclusion of a
boolean variable

>>Train(dnapath,cellpath,protpath,croppath,resolution,filename,dimensionality, isdiffeomorphic)

If you are using the data provided the training should take about an hour.
We will adjourn for lunch and return to our trained model. Note: Larger
datasets and 3D data may take hours to train a model so running on
a cluster is recommended.

6.3.1 Additonal training options

Once you have started training your model, you may want to explore some of
the other training options available in CellOrganizer. Below are a few of the
more commonly modified options available. If you modify the template file for
your specific uses it is recommended that you save a new version of the file for

17

Figure 9: CellOrganizer dependency structure.

your specific case.

The following options are editable via the param structure in CellOrganizer.
downsampling - This is a 1xD vector where D is the number of dimensions (2
or 3). These numbers are the number of times smaller your images will be for
training. This comes at the cost of accuracy for small objects, but can vastly
speed up the training process. The default values are [1,1] and [5,5,1] for 2 and
3D training respectively.
cytonuclearflag - This is a string flag that may be assigned to ’cyto’,’nuc’,or
’all’ and determines where the vesicular objects are allowed to exist. This pa-
rameter is defaulted to ’cyto’ and is crucial to change when working with nuclear
proteins.
train.flag - This parameter is again a string assigned to ’nuclear’,’framework’,
or ’all’. If set to ’nuclear’, only the nuclear model will be trained. Framework
will train the nuclear and cell model and ’all’ will train the framework plus a
vesicular model.

6.4 Synthesizing From Generative Models

Related CellOrganizer demos: Synthesis, demo2D00, demo3D01, demo3D05,
demo3D15, demo3DMultiresSynth, demo3DObjectAvoidance, demo3DDiffeoSynth gmm,
demo3DDiffeoSynth grid, demo3DDiffeoSynth grid pick, demo3DDiffeoSynth uniform.

18

Objectives To teach the basics of to synthesize images from generative
instances from models learned from imaging data.

Procedure
Using the model created in the previous section you will now synthesize in silico
cells. To do this you will use the Synthesis template. Enter edit Synthesis

into the Command Window to open the template. The file will read as follows:

function Synthesis(modelPath,savePath,numSynthImgs)

If you are using the model created in the previous section set the modelpath
input to:

>>modelpath = {’./tutorialModel.mat’};

Next, set the location you would like to save the results. Again, this is just
a string for example savepath = ’.’; will save the resulting instances in the
current directory.

Lastly you must set the number of images you would like to sample from the
model. To start you may want to set numSynthImgs = 1;.

Now you are ready to generate an instance from your generative model. Type:

>>Synthesis(modelPath,savePath,numSynthImgs);

This should take a minute or two and generate an image from your model that
is saved in the location you specified. This should produce a set of 3D tif images
that resemble the slice in figure 6.4 below.

6.4.1 Synthesizing multiple models

To create an instance containing multiple protein patterns we will simply assign
multiple models to the modelpath. For example:

modelpath = {’./models/model1.mat’,’../models/model2.mat’};

Note: The synthesized models will use the cell and nuclear models
contained in the first model in the model list.

6.4.2 Synthesizing from diffeomorphic models

By default, instances from diffeomorphic models are sampled according to the
approximate probability density of the cells and can be synthesized with the
above Synthesis(...) command. In addition to the implicit non-parametric
density sampling, CellOrganizer offers demos to illustrate other sampling meth-
ods, each of which demonstrate different methods of representing the shape
space.

19

Figure 10: Single slice from generated LAMP2 pattern

20

>>demo3DDiffeoSynth_gmm

Marginalizes out the all but the first two dimensions of the shape space and
learns a gaussian mixture model over the positions of training images and sam-
ples points from this parametric representation.

>>demo3DDiffeoSynth_grid

Synthesizes images from a grid over the first three dimensions of the shape space.

>>demo3DDiffeoSynth_grid_pick

Displays to the user a two-dimensional representation of the shape space and
allows the user to select a points to be synthesized.

>>demo3DDiffeoSynth_uniform

Selects a point uniformly at random from the complete shape space.

6.4.3 Additional synthesis options

Once you have started synthesizing your model, you may want to explore some
of the other synthesis options available in CellOrganizer. Below are a few of the
more commonly modified options available. If you modify the template file for
your specific uses it is recommended that you save a new version of the file for
your specific case.

The following options are editable via the param structure in CellOrganizer.
synthesis - This parameter is string assigned to ’nuclear’,’framework’, or ’all’.
If set to ’nuclear’, only the nuclear model will be trained. Framework will train
the nuclear and cell model and ’all’ will train the framework plus a vesicular
model.
output - This is a structure that contains several flags for different types of
outputs including ’SBML’,’tifimages’,and ’indexedimage’.

6.5 Reading SBML and creating SBML-spatial models

Related CellOrganizer demos: demo3DSBML, demo3DPrimitives, demo3D13,
Objectives To learn how to use an SBML file to automatically generate the

necessary geometries for a realistic cellular simulation.
Procedure

To create a SBML-spatial biochemical system for the SBML file generated dur-
ing day two, you will use demo3DSBMLTutorial. Open this file by typing
edit demo3DSBMLTutorial in the Command Window and you will see:

21

Figure 11: Diffeomorphic shape space with implicit distribution modeled as a
gaussian mixture model with 2 components. Color indicates relitave proba-
bility density, black circles indicate training images in the shape space. In the
non-parametric density represntation, each simplex (triangle) contains the same
probability mass.

22

demo3DSBMLTutorial(SBMLpath,coreSTD,renderSTD).

This demo will read in an SBML file like the one you created yesterday, attempt
to find models that correspond to the compartments in the SBML file, and
synthesize images from the appropriate models. This is a modified version of the
demo3DSBML file included in the CellOrganizer release. It has been modified
to allow you to run the model in a reasonable time.

To use this demo, set the

SBMLpath = ’./SampleData/**<check name w/Jose>>**.xml’;

The other two parameters determine how much overlap you will allow the ob-
jects to have and how big they will be respectively. If the coreSTD is set equal
to the renderSTD the objects will not overlap at all, but synthesis will be dra-
matically slowed. For demonstration purposes set the coreSTD = 0.5; and the
{renderSTD = 1; to allow the simulation to run quickly. To ensure no overlap
at all, set coreSTD = renderSTD;.

To automatically select the models and generate an SBML-spatial+SBML in-
stance. Enter:

demo3DSBMLTutorial(SBMLpath,coreSTD,renderSTD)

Note: The standard demo3DSBML synthesis will take much longer
since it synthesizes high resolution 3D images with no object over-
lapping allowed.

6.5.1 Creating SBML-spatial files from previously synthesized ge-
ometries

Sometimes it is very useful to create an SBML-spatial file of just a pre-synthesized
geometry. For example, you may want to use the synthesized geometries in the
provided SampleData folder to create framework meshes. To do this you will
use demo3DImg2SBML. This demo takes in a cell array of images you wish to
create SBML-spatial meshes for. It also takes a resolution at which the images
were synthesized at.

6.6 Analyzing spatially realistic simulations

Objectives Now that you’ve become familier with all the tools used to create
your simulations run during Day 2, we will analyze the results of these data.

6.6.1 Plotting time series reactions

To plot the results of your MCell simulations we will use the {plotMCell}

function. This function takes only one argument {datapath} which is a string
pointing to the ’react data/seed*/’ folder created by MCell. Where ”seed*” is
whatever seed you wish to analyze(e.g. seed 00001). This function will find all

23

Figure 12: MCell output of the number of ligands bound to endosomal mem-
branes vs time (s)

the reaction data you have written out from MCell for the selected seed, create
and save a count vs time plot for each species. These plots will look like 6.6.1
below.

6.7 Analyzing cellular organization

To plot the results of your simulations based on the location in shape space, you
will want to use the provided plotMCellShapeSpace(paramPos,resultsMat,timepoints,savepath)

function. This function takes two input arguments. This will generate a scatter
plot like the one shown in 6.7

The first argument for this function is the position from within parameter space
you’ve selected your geometries. For this tutorial you will use the 2D positions
of the cells in a shape space that we simulated in MCell. The provided positions
for this workshop cells were selected using the demo3DDiffeoSynth_grid_pick

demo.

The second parameter, resultsMat is a results matrix containing the counts

24

Figure 13: Hypothetical example analysis of cell shape impact on biochemistry
generated with the plotMCellShapeSpace function

25

of a specific output at a given timepoint specifiec by the vector timepoints.
For resultsMat each column represents a time point and rows are observations.

The final parameter is the path that you wish to save the current analysis. By
default this path will be set to your current directory and create a folder called
OrganizationPlots.

For this demonstration we will use only the final values from your set of simu-
lated results from day two. We will demonstrate this in the front of the class-
room using the function demoplotMCellSS(datapaths,paramPos) inside the
SampleData folder. This morning we compiled the results of your simulations
last night into our machine and will refer to each results folder as an element in
the cell array datapaths.

The second input for this demo is the positions of the cells sampled using
demo3DDiffeoSynth_grid_pick demo. The results of this demo will be a set
of scatter plots where each sampled point in shape space is colored with the
final value from its simulation where larger species counts are in warmer colors.
We will generate these plots and discuss any correlation seen in these plots.
In the future, more quantitative analysis of these correlations will be done to
determine the dependence of system behavior on cell shape and organziation.

References

[1] Harris, Leonard A., Justin S. Hogg, and James R. Faeder. ”Compartmental
rule-based modeling of biochemical systems.” Winter Simulation Conference.
Winter Simulation Conference, 2009.

[2] T. Peng, Wei Wang, G. K. Rohde1, R. F. Murphy (2009) Instance-Based
Generative Biological Shape Modeling. Proceedings of the 2009 IEEE Inter-
national Symposium on Biomedical Imaging (ISBI 2009), pp. 690-693.

[3] T. Peng and R.F. Murphy (2011) Image-derived, Three-dimensional Gener-
ative Models of Cellular Organization. Cytometry Part A 79A:383-391.

26

	Required software
	Tutorial overview
	Day 1: Spatial Modeling with CellBlender
	Day 2: Reaction Network Modeling with RuleBender
	Day 3: Defining Complex Geometries with CellOrganizer

	A Brief Introduction to CellBlender
	Required software
	Installation
	Model description
	Defining our system
	Simulating your system
	Final thoughts for Day 1

	Introduction to Compartmental Rule-Based Modeling with BioNetGen and RuleBender
	Required software
	Installation
	A basic model: Ligand receptor binding
	Glossary
	Procedure

	Component states
	Comparmental BioNetGen

	Importing external models into CellBlender
	Required material
	Systems Biology Markup Language (SBML)
	Importing SBML
	Checking your meshes
	Utilizing partitioning
	Running CellBlender
	Visualizing and plotting data
	Plotting reaction data

	Modeling cellular organization (CellOrganizer/SBML-spatial)
	Required software
	Installation
	Training generative models
	Additonal training options

	Synthesizing From Generative Models
	Synthesizing multiple models
	Synthesizing from diffeomorphic models
	Additional synthesis options

	Reading SBML and creating SBML-spatial models
	Creating SBML-spatial files from previously synthesized geometries

	Analyzing spatially realistic simulations
	Plotting time series reactions

	Analyzing cellular organization

