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Computational Microphysiology

We want to simulate realistic 3D cellular microphysiology at length scales from nm and
up and timescales of ps and longer.
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Biomolecular Systems at the Molecular Level

To a first approximation, at the molecular
level cells mostly consist of biomolecules
solvated by (a large number of) water
molecules.

Relevant time and length scales are fs
(10−15s) and Å (10−10m).

From a computational modeling point of
view molecular systems can be described
using Newtonian equations of motion
(molecular dynamics)

mi
d2

dt2
ri = − ∂

∂ri
V (r1, ..., rN) (1)
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Effective Description of Relevant Degrees of Freedom

Often, at the level of cellular events and biochemical reactions we are only interested in a
much smaller number of degrees of freedom qj ,M � N (e.g., center of mass motion).
Phenomenologically, this can be written as (j = 1, 2, ..., M)

µj q̈j = − ∂

∂qj
W (q1, ..., qM)− γj q̇j + σjξj(t) (2)

This is a stochastic differential equation, the Langevin equation. For single particles this
can be written as

mr̈ = −∇W (r)− γ ṙ + σξ(t) (3)

In the strong friction limit |γ ṙ| � |mr̈| (usually a good approximation if one considers
time intervals > 1ps) this becomes

γ ṙ = −∇W (r) + σξ(t) (4)

This equation underlies so called Brownian Dynamics Simulations.
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Effective Description of Relevant Degrees of Freedom

In the absence of external forces acting on the particles

γ ṙ = σξ(t) (5)

Instead of following the trajectories of particles via Eq. (5) directly we can also examine
the time evolution of the conditional probability density p(r, t|r0, t0). It can be shown
that Eq. (5) corresponds to the Fokker-Planck equation

∂tp(r, t|r0, t0) =
σ2

2γ2
∇2p(r, t|r0, t0) (6)

This is the celebrated Einstein Diffusion Equation describing microscopic transport of
particles.
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Diffusion Theory - Fick’s 1st and 2nd Law

Developed by physiologist Adolf Fick in 1855.

Fick’s 1st Law:

J(r, t) = −D ∇C(r, t) (7)

Fick’s 2nd Law:

∂C(r, t)

∂t
= ∇ (D ∇C(r, t)) = D ∇2C(r, t) (8)

Eq. 2 is called the Diffusion Equation.

Here, J, diffusion flux [Mol length−2 time−1], D, diffusion coefficient [length2 time−1,
cm2s−1], C concentration [Mol length−3, mol l−1].
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Einstein Diffusion Equation - Solution

The solution to Einstein’s Diffusion Equation provides the basis for MCell diffusion
algorithm.

∂p(r, t)

∂t
= D ∇2p(r, t) , D =

σ2

2γ2
(9)

In the neighborhood of a given molecule location, the probability p can be assumed to be
radially symmetric, p(r, t) ≡ p(r , t) and Eq. 3 simplifies to

∂p(r , t)

∂t
= D

1

r

∂

∂r
r 2 ∂p(r , t)

∂r
(10)

Equation can be solved analytically for certain boundary conditions. E.g. for a point
source of molecules the solution becomes

p(r , t) =
1

λ3π3/2
e−r2/λ2

, λ =
√

4Dt (11)
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Monte Carlo Probabilities For Diffusion in MCell

Eq. 5 can be directly converted into the fractional probability pr for a displacement
between r and (r + dr) for a single diffusing molecule:

pr =
1

λ3π3/2
e−r2/λ2

(4πr 2)dr (12)

ps =
4√
π
s2e−s2

ds , s =
r

λ
=

r√
4Dt

(13)

Using Eq. 6 we can also compute the mean radial displacement l̄r

l̄r =
2

π
λ ∼
√
t (l̄⊥ =

l̄r
2

) (14)
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Monte Carlo Probabilities For Diffusion in MCell

ps =
4√
π
s2e−s2

ds

s =
r√
4Dt

To choose a radial distance R for diffusion we pick a random number X in [0, 1] and solve

X = CDF (R) =

∫ R

0

psds = erf (R)− 2√
π
R e−R2

(15)

This can be efficiently computed during runtime of the simulation.
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

S0S1
k1

k2
S2

...

kn
Sn

Unimolecular transition: Initial state S0

can undergo one of n possible transitions to
states S1 through Sn with first order rate
constants k1, k2, .... kn.

We need to know the probability pt that a molecule in state S0 undergoes a transition. pt
is given by the fraction of [S0] that undergoes a transition during time t:

pt =
[S1]t + [S2]t + ...+ [Sn]t

[S0]0
= 1− [S0]t

[S0]0
(16)

From the rate equation we obtain

−d [S0] = (k1 + k2 + ...+ kn)[S0]dt =

(
n∑

j=1

kj

)
[S0]dt (17)
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

Eq. 17 can be integrated

∫ [S0]t

[S0]0

d [S0]

[S0]
= −

(
n∑

j=1

kj

)∫ t

0

dt (18)

to yield

[S0]t
[S0]0

= e−
∑n

j=1 kj t (19)
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

Substituting Eq. 19 into Eq. 16 then gives the probability pt for unimolecular transitions
as (here τ is the mean lifetime of S0)

pt = 1− e−
∑

j kj t , τ = 1/
∑

kj (20)

p1 = pt
k1∑
j kj

, ... pn = pt
kn∑
j kj

;
∑
i

pi = pt (21)

Notes:

The näıve way to choose unimolecular reactions is to compare a single random
number in [0, 1] to the cummulative probabilities (p1, p1 + p2, ..., 1).

MCell3 instead computes the lifetime of each molecule from the exponential
distribution of lifetimes ρ(t) = 1

k
e−kt and then uses its scheduler to schedule the

unimolecular reaction to occur at the appropriate time.
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Monte Carlo Probabilities For Bimolecular Associations in MCell

A + R

k+1
AR1

...

k+n ARn

Bimolecular Association: An example
would be association between ligand A
(volume molecule) and receptor R (surface
molecule) with n possible binding sites.

We will derive a relation for pb, the binding probability of ligand A to receptor R. The
average rate of binding pbt of A to R after NH hits is given by

pbt = 1− (1− pb)NH (22)

Next, we require that the average binding rate is equal to binding rate predicted by mass
action kinetics given by

pt =
∑
i

k+i [A]0∆t , ∆t → 0 (23)

1− (1− pb)Nh = pbt = pt =
∑
i

k+i [A]0∆t (24)
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Monte Carlo Probabilities For Bimolecular Associations in MCell

For small ∆t, pb and NH approach zero and thus (1− pb)NH ≈ (1− NHpb). Thus, Eq.
24 simplifies to

pb =
∑
i

k+i
[A]0∆t

NH
, ∆t → 0 (25)

Next, we need to derive a relation for NH the number of hits of A on R
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Monte Carlo Probabilities For Bimolecular Associations in MCell

The number of hits per unit time on a tile with
surface area AET is given by

hits = Na
l̄⊥
∆t

AET [A]0 (26)

This results in (∆t → 0)

NH =

∫ ∆t

0

hits dt ≈ NaAET [A]0

(
4D∆t

π

)1/2

(27)

Eliminating NH in Eq. 25 with 27 then yields the final expression for pb

pb =
∑
i

k+i
1

2NaAET

(
π∆t

D

)1/2

(28)

This can be efficiently computed at system initialization.
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Monte Carlo Probabilities For Volume Reactions in MCell

A B

B

B Ai f

Crint

A B --> products+

Volume molecules in MCell diffuse via
ray-tracing along a randomly selected direction
and diffusion step length computed as explained
previously.

Reaction partners are discovered and tested for
reactions during ray marching. This unique
approach provides good correlation between
diffusive motion and location of reactants.

For the purpose of collision detection reactants
acquire an interaction radius.

Using an argument analogous to the one for bimolecular associations we can derive the
following relation for the reaction probility between two diffusing volume molecules with
diffusion constants D1 and D2:

p =
k

4Aint

(
π∆t

D1 + D2

)1/2

(29)
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