(A very fast primer for) Diffeomorphic Modeling in CellOrganizer

Gregory Johnson

Diffeomorphic Models

- Uses Large deformation diffeomorphic metric mapping (LDDMM)
- Morph one shape to another
- Builds "shape space"
- Allows for walks through shape space that could be used to describe cellular dynamics

WHY?

Motivation

 Cells don't always satisfy assumptions of parametric models.

Segmented PC12 cell

Star-polygon ratio model representation

Parametric shape space models

2008

Keren et al.

Shape space

Limitations of common outline model

Srivastava et al. 2005

Limitations of common outline model

Distance from center of distribution

LDDMM - Large Deformation Diffeomorphic Metric Mapping

What is a diffeomorphism?

 Essentially a smooth and invertible mapping from one coordinate space to another

A diffeomorphic mapping from a regular rectangular grid.

Diffeomorphic mappings of continents to a 2D projection of a globe

http://wwwx.cs.unc.edu/~mn/classes/comp875/doc/diffeomorphisms.pdf

A diffeomorphic mapping from one image to another.

http://wwwx.cs.unc.edu/~mn/classes/comp875/doc/diffeomorphisms.pdf

Nonparametric shape image-based models

Real 2D nuclear shapes

Cannot just interpolate images as if they were vectors

http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/

Morphing to interpolate images

Peng et al. 2009

Distance between two shapes

Iterative reduction in difference between deformed shape A and B
Distance = total work across all iterations

LDDMM - Large Deformation Diffeomorphic Metric Mapping

 Minimal energy transformation with respect to the gradient of the deformation field i.e.
 Geodesic distance

http://wwwx.cs.unc.edu/~mn/classes/comp875/doc/diffeomorphisms.pdf

LDDMM shape spaces model joint distribution across morphological features

Diffeomorphic Training

Shapes to Space

But this takes a lot of time

Partial Distance Matrix Learning

Most complete shape space

Partial Distance Matrix Learning

Landmark MDS

Nystrom Approximation

$$\tilde{\mathbf{K}} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B} \end{array} \right]$$

Diffeomorphic Synthesis

Space to Shapes

Synthesis strategy for new points

Modeling distribution of shapes – p(x)

Modeling distribution of shapes -p(x)

Shape space modeled as a Gaussian Mixture Model

Diffeomorphic space

- New feature space
 - Positions in space correspond to a real image
 - Feature dimensions correspond with dimensions that with highest eigenvalues

Can be treated exactly like a normal feature space

HeLa shape space with DNA intensity

DNA intensity

Minimum energy pathway reconstruction example

Solution: Minimum global weight bipartite matching

Minimum energy pathway reconstruction example

Minimize net flow

while
min(max(w) - min(w))
Constraints
Travel along shortest path on d²

Procedure

- Construct distance matrix
- Construct neighbor graph
- For each interval: t_i to t_{i+1}
 - Find shortest path from each observation in t_i to every other cell in t_{i+1}

Find transition pairs via minimum weight bipartite matching

Construct transition pathways

