

An NIH Biomedical Technology Research Center

Image-derived spatiotemporal models of subcellular organization, differentiation and perturbation

Robert F Murphy

Ray & Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering and Machine Learning External Senior Fellow, Freiburg Institute for Advanced Studies Honorary Professor, Faculty of Biology, University of Freiburg, Germany

RAY AND STEPHANIE LANE Center for Computational Biology

Carnegie Mellon

ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG

FRIAS FREIBURG INSTITUTE FOR ADVANCED STUDIES

Spatially-accurate cell simulations

- Where do we get accurate information on the spatial distribution of proteins/ organelles in order to incorporate it into cell/tissue simulations?
- How do we learn and predict cell-type specific cell organization differences and how they are affected by perturbagens?

Traditional approach

- Take fluorescence microscope images of a tagged protein
- "Convert" them into words/GO terms to describe its subcellular location

Traditional approach

- Use visual inspection of images
- Assumes that
 - we know the "classes" that proteins should be placed in (e.g., GO terms)
 - people are good at assigning the terms after looking at one or more images

Supervised Machine Learning

- Design features to describe subcellular patterns
- Use examples of images of proteins "known" to be in different subcellular patterns to train classifier

However...

- Assigning words not sufficient
 - Knowing that apples and oranges can be distinguished by their color does not allow you to understand how either are formed
- Descriptive models may be wrong if features detect artifacts correlated with classes (e.g., background or illumination variations from different wells)

Alternative: Generative Modeling

Descriptive vs. Generative Models

- Goal of descriptive models is to allow us to distinguish instances that we are given
 - Need "just enough" description
- Goal of generative models is to be able to create new instances

– Need "complete" description

Generative models of images

 We seek the "underlying" model from which images are drawn

Classical inverse problem with statistical twist

- Learn underlying reality observed via imaging
- Extensive work on image reconstruction to create a (higher resolution?) model of a conserved structure (e.g., nuclear pore, ribosome) by removing noise and variation
- Our goal is learning *statistical*, *generative* model of reality sampled via imaging by removing noise but *keeping* variation 14

Making models generative

estimate generative parameters for each cell

build stat model

http://CellOrganizer.org

CellOrganizer

Images + Models

Center for Bioimage Informatics

Home People Publications Downloads

May 17, 2013: Version 1.9.0 released!

New: Now allows synthesis of cell and nuclear shape instances for Hela cells using a diffeomorphic model.

The CellOrganizer project provides tools for

- · learning generative models of cell organization directly from images
- · storing and retrieving those models in XML files
- · synthesizing cell images (or other representations) from one or more models

Model learning captures variation among cells in a collection of images. Images used for model learning and instances synthesized from models can be two- or three-dimensional static images or movies.

CellOrganizer can learn models of

- · cell shape
- nuclear shape
- chromatin texture
- vesicular organelle size, shape and position
- microtubule distribution.

These models can be *conditional* upon each other. For example, for a given synthesized cell instance, organelle position is dependent upon the cell and (chloroplasts) nuclear shape of that instance.

Cell types for which generative models for at least some organelles have been built include human HeLa cells, mouse NIH 3T3 cells, and Arabidopsis protoplasts. Planned projects include mouse T lymphocytes and rat PC12 cells.

Support for *CellOrganizer* has been provided by grants GM075205 and GM090033 from the <u>National Institute of General Medical Sciences</u>, grants MCB1121919 and MCB1121793 from the <u>U.S. National Science Foundation</u>, by a Forschungspreis from the Alexander von Humboldt Foundation, and by the <u>School of Life Sciences of the Freiburg Institute for Advanced</u> Studies.

Synthesized Cell Images (click to view)

PARAMETRIC MODELS OF NUCLEAR SHAPE

Peng & Murphy, Cytometry 2011 3D Nuclear Shape – Cylindrical Spline Surface

Tao Peng

Statistical Models

- Determine the 33 parameters for many cells
- Learn appropriate statistical distribution (e.g., multivariate Gaussian)
- Sample from this distribution to synthesize new nuclei

CELL SHAPE

Conditional models

- To ensure that the proper relationship exists between a synthetic nucleus and a synthetic cell surface, the models must be *conditional*
- Model for cell shape captures how cell shape depends on nuclear shape

Cell shape: Ratio model

- Conditioned on nuclear shape: $r = d_1 / d_2$
 - Sample evenly around a circle to represent the shape by radius ratios (360 values)
 - Parameterization

$$\mathbf{r} \approx \overline{\mathbf{r}} + \sum_{i=1}^{k} \underline{b}_{i} \boldsymbol{\varphi}_{i}$$

- Keep
- 10 principal components for 2D
- 25 principal components for 3D

MODEL: VESICULAR ORGANELLES

Modeling Vesicular Organelles Filtered **Fitted Gaussians**

Original

Gaussian object modelparameters

Number of objects in a cell N

Object size σ_x , σ_y , σ_z

Single object fluorescence **F**

Protein Object Model: size, shape, intensity

- Size of each ellipsoid represented as distribution of length of major axis and conditional distributions of lengths of other axes relative to major axis
- Exponential distribution for intensity of each object

Protein Object Model: Position

Potential:
$$P(r,a) \propto \frac{\tau(r,a)}{1+\tau(r,a)}$$

where $\tau(r,a) = \exp\left(\underline{\beta_0} + \underline{\beta_1}r + \underline{\beta_2}r^2 + \underline{\beta_3}\sin a + \underline{\beta_4}\cos a\right)$

Normalized potential map: A 2-d density function

NON-PARAMETRIC MODELS

Diffeomorphic analysis of shape

- Sometimes cell or nuclear shapes are irregular
- Can use distance between shapes to characterize shape instead of parameters of model (based on work by Michael Miller and colleagues)

Gustavo Rohde

Morphing one shape into another

Constructing a shape space Taraz Buck

 Once we have distances of every cell to every other cell, we can try to find a "map" that puts each cell the correct distance from the others (i.e., puts cells with short distances near each other)

Greg Johnson

Devin Sullivan

Distance matrix...

	BOS	CHI	DC	DEN	LA	MIA	NY	SEA	SF
BOS	0	963	429	1949	2979	1504	206	2976	3095
CHI	963	0	671	996	2054	1329	802	2013	2142
DC	429	671	0	1616	2631	1075	233	2684	2799
DEN	1949	996	1616	0	1059	2037	1771	1307	1235
LA	2979	2054	2631	1059	0	2687	2786	1131	379
MIA	1504	1329	1075	2037	2687	0	1308	3273	3053
NY	206	802	233	1771	2786	1308	0	2815	2934
SEA	2976	2013	2684	1307	1131	3273	2815	0	808
SF	3095	2142	2799	1235	379	3053	2934	808	0

http://personality-project.org/r/mds.html

... to coordinates

cmdscale(cities)

Constructing a shape space

For a set of shapes, compute distances between pairs... ... and find coordinates for each shape that reproduce those distances

Shape space

Synthesized shape for current position in shape space

× = current shape's position Training data shapes are shown at their respective locations in random

Static to dynamic

- Methods such as these allow a collection of static images of different cells to be converted into a model of the dynamics of cells
- Need to have a way to learn the rules governing "trajectories" in the model

Construct space to relate shape to DNA content

First Shape Canonical Component

3D HeLa

DNA

Directed walk in DNA-shape space

3D HeLa

Actual trajectories in shape space

MODELING SUBCELLULAR DISTRIBUTION CHANGES DURING CELL SIGNALING

Modeling non-organellar patterns and dynamics

 What are the spatiotemporal patterns of proteins involved in signaling during antigen presentation?

Taraz Buck

Baek Hwon Cho

Christoph Wülfing

Analysis of T cell synapse patterns

DIC and GFP fusion protein intensity

Image processing pipeline

ARP3 relative time -2, 107 cells (bottom to top slices)

ARP3 relative time 0, 109 cells (bottom to top slices)

ARP3 relative time -2, 107 cells (synapse to end slices)

ARP3 relative time 0, 109 cells (synapse to end slices)

Redistribution Dynamics

Note: intensity on log scale

Redistribution Dynamics

Thresholded intensity

Redistribution Dynamics

Thresholded intensity

Clustering of Spatiotemporal Patterns

Distance matrix for each average 4D map to each other

MODELING CHANGES DURING CELL DIFFERENTIATION

Model system

Hauke Busch

Melanie

- PC12 Rat neuroendocrine tumor cells ^{Boerries}
 - Normal very sensitive, divide
 - NGF Stop dividing and start differentiating

What is the phenotypic ordering of morphological changes that result in a differentiated cell?

Imaging

- Cells are cultured and exposed to NGF
- Cells are imaged at various times after adding NGF
 - -0, 12, 24, 36, 48, 72, 96 hours
 - Prior to imaging, stain with MitoTracker

Greg Johnson

Convert images to models

Learn one-dimensional embedding of parameter space ("extent of differentiation")

Synthetic movie of cell and nuclear shape changes

hr: 0

Identifying Parameter Changes

Mitochondria Position Parameters

Conclusions

- Tools beginning to be available to build image-derived generative models
 - Learn the underlying cell "model" from which individual cell images are drawn
- Useful for
 - Learning perturbation models better than features!
 - Building spatially realistic cell simulations
 - Visualizing results from many noisy images

CellOrganizer

Project Leaders

Robert F. **Murphy**

Gustavo Rohde

Klaus Palme

Major

Hauke Busch

Taraz Buck

Ivan Cao-Berg

Ting Zhao

Tao Peng

Wei Wang

Aabid Sharif

Joshua Kangas

Jianwei Zhang

Alexander Dovzhenko Rüdiger Trojok **Jieyue** Li

Baek Hwan Cho

Christoph Wülfing

Jörn Dengiel

Melanie Boerries

Ivo Sbalzarini

M M BioS

An NIH Biomedical Technology Research Center

