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.
Spatially-accurate cell simulations

* Where do we get accurate information
on the spatial distribution of proteins/
organelles in order to incorporate it into
cell/tissue simulations?

 How do we learn and predict cell-type
specific cell organization differences
and how they are affected by
perturbagens?



.
Subcellular Location

microtubules = chromatin

nuclear envelope
nuclear pore

nucleolus

nucleus

Golgi complex

' lysosome
vesicle

cytosol
flagellum

)

4 AVl
\ plasma membrane
Y

rough smooth
endoplasmic endoplasmic
reticulum ribosomes reticulum



.
Subcellular Location

microtubules . chromatin

nuclear envelope
nuclear pore

nucleolus

nucleus

Golgi complex

' lysosome
vesicle

cytosol

Af 4 flagellum
o)
3 oL /
\plasma membrane
Y

rough smooth
endoplasmic endoplasmic
reticulum ribosomes reticulum




.
Subcellular Location

microtubules y, ' chromatin

nuclear envelope
nuclear pore

nucleolus

nucleus

Golgi complex

' lysosome
vesicle

cytosol

smooth

endoplasmic endoplasmic
reticulum ribosomes reticulum




.
Subcellular Location

microtubules . chromatin

nuclear envelope
nuclear pore

nucleolus

nucleus

Golgi complex

' lysosome
vesicle

cytosol

@ 4 flagellum
o)
- .’ » /
\plasma membrane
Y

rough smooth

endoplasmic endoplasmic
reticulum ribosomes reticulum




Traditional approach

» Take fluorescence
microscope images of a
tagged protein

e “Convert” them into
words/GO terms to
describe its subcellular
location




Traditional approach

» Use visual inspection of images

« Assumes that

— we know the “classes” that proteins should
be placed in (e.g., GO terms)

— people are good at assigning the terms
after looking at one or more images



Supervised Machine Learning

* Design features to describe subcellular
patterns

* Use examples of images of proteins
“known” to be in different subcellular
patterns to train classifier



However...

» Assigning words not sufficient

— Knowing that apples and oranges can be
distinguished by their color does not allow
you to understand how either are formed

» Descriptive models may be wrong if
features detect artifacts correlated with
classes (e.g., background or illumination
variations from different wells)



-
Alternative: Generative Modeling

« Human cognition + Generative model

Training
images

Statistical
generative
model

Generated
image

Generated examples



Descriptive vs. Generative
Models

» Goal of descriptive models is to allow us
to distinguish instances that we are
given
— Need “just enough” description

» Goal of generative models is to be able
to create new instances

— Need “complete” description



.
Generative models of images

* We seek the “underlying” model from
which images are drawn

/All possible A /An individual\ /An individual\
cells of a “Instance” of | | image of that
given type a cell of that individual

\_ ) \type ) Qnstance )

Many cells Many
images



Classical inverse problem with
statistical twist

* Learn underlying reality observed via imaging

« Extensive work on image reconstruction to
create a (higher resolution”?) model of a
conserved structure (e.g., nuclear pore,
ribosome) by removing noise and variation

* Our goal is learning statistical, generative
model of reality sampled via imaging by

removing noise but keeping variation 14
I



D~ o & Murphy, Cytometry 2007
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http://CellOrganizer.org
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e ions  May 17, 2013: Version 1.9.0 released!

Downloads  New: Now allows synthesis of cell and nuclear shape instances for Hela cells using a diffeomorphic model.

Synthesized Cell Images
(click to view)

The CellOr ganizer project provides tools for
« |learning generative models of cell organization directly from images
o storing and retrieving those models in XML files
« synthesizing cell images (or other representations) from one or more models

Model learning captures variation among cells in a collection of images. Images used for model learning and instances synthesized from models can be

two- or three-dimensional static images or movies. 2D Hela
(endosomes)
. 3D Hela
CellOr ganizZer can learn models of microtubules

el
« cell shape (mitochondria)
e nuclear shape
o chromatin texture g
« vesicular organelle size, shape and position
« microtubule distribution. 3D HelLa movie

", . . . e . 3D protoplast
These models can be conditional upon each other. For example, for a given synthesized cell instance, organelle position is dependent upon the cell and (chioroplasts)

nuclear shape of that instance.

Cell types for which generative models for at least some organelles have been built include human HelLa cells, mouse NIH 3T3 cells, and Arabidopsis
protoplasts. Planned projects include mouse T lymphocytes and rat PC12 cells.

Support for CellOr ganizer has been provided by grants GM075205 and GM090033 from the National Institute of General Medical Sciences, grants MCB1121919 and MCB1121793
from the U.S. National Science Foundation, by a Forschungspreis from the Alexander von Humboldt Foundation, and by the School of Life Sciences of the Freiburg Institute for Advanced
Studies.
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PARAMETRIC MODELS OF
NUCLEAR SHAPE



3D Nuclear Shape — Cylindrical Spline
Surface

Tao Peng

33 parameters

. (32 spline

B coefficients +
: - height)
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Statistical Models

* Determine the 33 parameters for many
cells

* Learn appropriate statistical distribution
(e.g., multivariate Gaussian)

« Sample from this distribution to
synthesize new nuclei






CELL SHAPE



.
Conditional models

* To ensure that the proper relationship
exists between a synthetic nucleus and
a synthetic cell surface, the models
must be conditional

* Model for cell shape captures how cell
shape depends on nuclear shape



Nuclear Cell
shape shape
Organelle
positions

MODEL.:
CELL SHAPE




-
Cell shape: Ratio model

» Conditioned on nuclear shape: r=d,/d,

— Sample evenly around a circle to
represent the shape by radius
ratios (360 values)

— Parameterization
— k
« Keep
* 10 principal components for 2D '
+ 25 principal components for 3D [







Nuclear Cell
shape shape
Organelle
positions

MODEL.:
VESICULAR
ORGANELLES




Modeling Vesicular Organelles

Original Filtered Fitted Gaussians

Gaussian object modelparameters

Number of objectsina cell N

Objectsize 6, 6, 0,

Single object fluorescence F




-
Protein Object Model:

size, shape, intensity

e Size of each ellipsoid represented as
distribution of length of major axis and
conditional distributions of lengths of other

axes relative to major axis

* Exponential distribution for intensity of
each object



-
Protein Object Model: Position

T(r,a)

Potential:  P(r,a) =
1+7(r,a)

where 7(7,a) = exp(@ + fr+ Byr’ + fysina + &cosa)

Normalized potential map:
A 2-d density function

~dﬂ

A1

r=dl/
(d1+d2)







NON-PARAMETRIC MODELS



Diffeomorphic analysis of shape

« Sometimes cell or nuclear
shapes are irregular

« Can use distance between
shapes to characterize shape
iInstead of parameters of model
(based on work by Michael
Miller and colleagues)

Gustavo
Rohde



Morphing one shape into another

Starting shape Target shape

0 0.0165 0.0191 0.0194 0.0195

Distance




F
Constructing a shape spaci I

* Once we have distances of every
cell to every other cell, we cantryto =~~~
find a “map” that puts each cell the
correct distance from the others
(i.e., puts cells with short distances
near each other)




Distance matrix...

BOS CHI DC DEN LA MIA NY SEA SF
BOS 0 963 429 1949 2979 1504 206 2976 3095
CHI 963 0 671 996 2054 1329 802 2013 2142
DC 429 671 0 1616 2631 1075 233 2684 2799
DEN 1949 996 1616 0 1059 2037 1771 1307 1235
LA 2979 2054 2631 1059 0 2687 2786 1131 379
MIA 1504 1329 1075 2037 2687 0 1308 3273 3053
NY 206 802 233 1771 2786 1308 0 2815 2934
SEA 2976 2013 2684 1307 1131 3273 2815 0 808
SF 3095 2142 2799 1235 379 3053 2934 808 0

‘ http://personality-project.org/r/mds.html




... to coordinates

cmdscale(cities)
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Constructing a shape space

For a set of shapes, ... and

find coordinates for

compute distances each shape that reproduce
between pairs... those distances

1 8 . 1.5}
[gd ... to produce a 2 o)
w7 >\€ < = distance matrix... go.s-
1)91. O o o

- S ® 01918161915

~19 0
=18 0
=316 0
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Shape space Synthesized shape for current
position in shape space

Component 2

Component 1

X = current shape’s position
Training data shapes are shown at




Static to dynamic

 Methods such as these allow a
collection of static images of different
cells to be converted into a model of the

dynamics of cells

* Need to have a way to learn the rules
governing “trajectories” in the model



Construct space to relate
shape to DNA content

DNA

First Shape Canonical Component 3D Hela
-



Directed walk in DNA-shape space

3D Hela
.



I
Actual trajectories in shape
space

2D C2C12
T ———.



MODELING SUBCELLULAR
DISTRIBUTION CHANGES
DURING CELL SIGNALING



Modeling non-organellar
patterns and dynamics

* What are the spatiotemporal patterns of
proteins involved in signaling during

antigen presentation?

—~ N
TarazBuck  Baek Hwon Cho  Christoph Wiilfing

it




I singleton et al. 2009
Analysis of T cell synapse

patterns
* DIC and GFP fusion protein intensity
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Image processing pipeline

Images of
fields

Segmentation

.- Images of
\ ¥ individual cells
Rigid alignment and

morphing to half-

Individual cells ellipsoid template
- with uniform
\' shape .
Parametric model

_ construction and
FrOnt Protein Comparison

distribution
m models




ARP3 ARP3
relative time -2, 107 cells (bottom to top slices) relative time 0, 109 cells (bottom to top slices)

ARP3 ARP3
relative time -2, 107 cells (synapse to end slices) relative time 0, 109 cells (synapse to end sllces)

48



Redistribution Dynamics

Note:
intensity on
log scale




Redistribution Dynamics

Thresholded
intensity




Redistribution Dynamics

Thresholded
intensity
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Clustering of Spatiotemporal
Patterns

Full Stimulus - CPalphat
Full Stimulus - Coronin1A
Full Stimulus - WASP
Full Stimulus - WAVE?2
Full Stimulus - Actin

B7 Blockade - ARP3

B7 Blockade - Coronin1A
B7 Blockade - Vav1

B7 Blockade - Actin

Full Stimulus - ARP3

Full Stimulus - Cofilin

i B7 Blockade - Cofilin

Full Stimulus - HS1

Full Stimulus - MRLC

I_l B7 Blockade - MRLC

10.025

10.02

10.015

Distance

o
o
—

0.005

B7 Blockade - CPalpha
B7 Blockade - WASP
B7 Blockade - WAVE?2

Distance matrix for each
average 4D map to each other



MODELING CHANGES DURING
CELL DIFFERENTIATION



Hauke Busch Melanie

» PC12 - Rat neuroendocrine tumor cells Beemes
— Normal — very sensitive, divide
— NGF — Stop dividing and start differentiating

What is the phenotypic ordering of morphological

chanﬁes that result in a differentiated cell?



Imaging
* Cells are cultured and exposed to NGF

» Cells are imaged at various times after
adding NGF

-0, 12, 24, 36, 48, 72, 96 hours
— Prior to imaging, stain with MitoTracker

~
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Greg Johnson




Convert images to models

-7, |

cell nucleus pattern

Learn one-dimensional embedding of
parameter space (“extent of differentiation”)
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Synthetic movie of cell and
nuclear shape changes
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Conclusions

* Tools beginning to be available to build
iImage-derived generative models

— Learn the underlying cell “model” from
which individual cell images are drawn

o Useful for

— Learning perturbation models — better than
features!

— Building spatially realistic cell simulations

— Visualizing results from many noisy images
I
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