
Integrating	Information	from	Diverse	
Microscope	Images:	Learning	and	Using	
Generative	Models	of	Cell	Organization	

Robert	F.	Murphy	
Ray & Stephanie Lane Professor of Computational Biology and 

Professor of Biological Sciences, Biomedical Engineering and Machine Learning 
External Senior Fellow, Freiburg Institute for Advanced Studies  

Honorary Professor, Faculty of Biology, University of Freiburg, Germany 
	

An	NIH	Biomedical	Technology	Research	Center	

March	9,	2018	



Classic	problem	in	cell	and	developmental	
systems	biology	

•  How	do	we	learn	and	represent	
–  sizes	and	shapes	of	different	cell	types	
–  number,	sizes,	shapes,	positions	of	organelles	
–  the	distribution	of	proteins	across	organelles	
–  how	organelles	depend	upon	each	other	
–  how	any	of	these	vary	

•  from	cell	to	cell	
•  from	cell	type	to	cell	type	
•  during	development	
•  in	presence	of	perturbagens	
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	Classic	approach	
•  Do	biochemical	or	imaging	experiments,	
capture	relationships	in	words	
– “secretory	vesicles	bind	to	microtubules”	

•  Two	problems	
– Difficult	to	establish	these	relationships	from	
images	

– Does	not	adequately	describe	them	
•  Can	we	do	better	via	machine	learning?	



Cellular	Pattern	Recognition	
•  Describe	cell	patterns	using	numerical	
features	

•  Do	classification,	etc.	to	assign	terms	
•  First	described	in	Boland,	Markey	&			
Murphy	(1998)	and	Boland	&	Murphy	(200 	

•  Later	popularized	in	packages	such	as	
CellProfiler,	WND-CHARM,	Ilastik,	
CellCognition,	etc.	



Drawback	
•  Image	features	are	typically	not	transferable	
across	images	from	different	sources	
(widefield	vs.	confocal	vs.	superresolution,	
differences	in	magnification	or	camera	pixel	
size,	pixel	bit	depth,	etc.)	



Traditional	High	Content	Screening/
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Different	HCS	systems	or	sites	
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Traditional	HCS	design	focused	on	finding	hits	within	a	given	screen,	not	
on	comparing	results	between	screens	or	learning	generalizable	effects	



Another	drawback	
•  Term	assignment/classification	approaches	
are	incomplete	and	do	not	make	full	use	of	
information	in	images	

•  “Is	this	an	apple	or	an	orange?”	is	a	
discriminative	question;	can	be	answered	with	
1	or	2	features	

•  “What	does	an	apple	look	like?”	requires	a	
generative	model	



Generative	models?	
•  Human	cognition	 •  Image-based	models	
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Open	source	project:	CellOrganizer	
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Zhao & Murphy, Cytometry 2007 



http://CellOrganizer.org	



Generative	vs.	discriminative	HCS	
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Compartmental	models	for	cell	
simulations	

•  Use	the	assignments	to	put	each	
protein	“in”	its	compartment	and	
– use	a	cartoon	compartmental	model	
– use	real	image	to	determine	
compartment	volume/surface	area	

– use	PDEs	for	each	pixel	of	a	real	image	

•  These	geometries	are	not	very	realistic	



Zhao & Murphy, Cytometry 2007 

CellOrganizer	modeling	goals	
•  Cell	models	should	be	

– Automated:	learned	directly	from	images,	

– Generative:	able	to	synthesize	new	examples,	

– Statistically	accurate:	reflect	variation	from	cell	
to	cell,	

– Compact:	can	be	communicated	with	significantly	
fewer	bits	than	the	training	data.	



•  Learn underlying reality observed via imaging 
•  Extensive work on image reconstruction to 

create a (higher resolution?) model of a 
conserved structure (e.g., nuclear pore, 
ribosome) by removing noise and variation 

•  Our goal is learning statistical, generative 
model of reality sampled via imaging by 
removing noise but keeping variation 

	

Classical inverse problem 



Parametric	models	
•  Computer	vision	problems	such	as	this	have	
traditionally	been	tackled	by	hand-
constructing	models	and	learning	their	
parameters	from	images	
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“Deep”	learning	
•  If	large	numbers	of	training	examples	are	
available,	“deep	learning”	methods	can	learn	
directly	from	images	without	need	for	custom	
design	
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Deep	learning	models	(e.g.,	autoencoders)	



But...	
•  Large	numbers	of	“labeled”	training	images	are	
often	not	available	

•  Deep	learning	models	only	understand	pixels,	not	
structures/objects	
– Not	easily	compared/combined	across	diverse	images	
–  Cells	are	not	made	of	probabilistic	“blobs”	of	
macromolecules	

– Many	organelles	have	discrete	boundaries/structures	

	



Challenge	
•  Fluorescent	microscopy	provides	very	useful	
information	about	cell	organization	and	
processes	

•  But	the	number	of	molecules	that	can	be	
imaged	at	the	same	time	in	live	cells	is	smaller		
than	the	number	involved	in	many	processes	

•  How	do	we	combine	information	from	
different	images	to	provide	coherent	picture?	



Solution?	
•  Merging	information	through	generative	
models	built	upon	a	common	reference	

•  Two	examples:	
– Distinguishing	different	punctate	structures	from	
separate	images		

– Learning	potential	spatial	causal	relationships	
involving	in	cell	signaling	



MODELING	PUNCTATE	ORGANELLE	
DISTRIBUTIONS	



Images	of	11	different	
“vesicle”	proteins	from	Human	Protein	Atlas	

	Johnson	et	al	(2015)		PLoS	Comp.	Biol.	

	

Can	we	learn	whether	their	patterns	are	distinguishable?	



Segmentation	of	punctate	organelles	
•  Use	high	pass	filter	

Original	image	 	 	 	 	segmented	puncta 	 	 	 	 	remaining	
	 	 	 	 	 	 	and	microtubules 	 	 	 	 	fluorescence	

	



Point	process	models	

•  Capture	relationship	between	position	of	an	
organelle	and	positions	of	organelles	of	different	
types	(“inhomogeneous	Poisson	process”)	

•  Positions	of	n	organelles	depend	upon	bθ	functions	

	



Factors	for	point	process	models	
•  The	functions	depend	upon	specified	factors,	variables	for	
which	values	are	known	at	all	positions	in	the	cell	
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Learning	dependencies	on	factors	

•  An	important	question	is	to	learn	on	which	
factors	a	particular	pattern	depends	

•  Can	do	this	by	cross-validation:	for	each	
combination	of	factors	
– Estimate	parameters	from	training	data	
– Estimate	likelihood	of	test	data	being	generated	by	
that	model	

– Average	likelihoods	



Contributions	of	different	factors	
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How	different	are	the	11	punctate	
patterns?	

•  Can	also	assess	by	cross-validation	(only	2	
images	available	in	HPA!)	

•  Train	11	models	using	1	image	of	each	protein	
•  Assign	remaining	test	image	of	each	protein	to	
the	model	that	it	has	the	highest	likelihood	of	it	
having	been	produced	by	



11	distinct	punctate	patterns	using	
relationship	to	microtubules	

U-251 MG COPI COPII Caveolae Coated Pits Early Endosomes Late Endosomes Lysosomes Peroxisomes RNP bodies Recycling Endosomes Retromer

COPI
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

COPII
0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	

Caveolae
0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	

Coated Pits
0	 0	 0	 0.67	 0	 0	 0	 0	 0	 0	 0.33	

Early Endosomes
0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	

Late Endosomes
0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	

Lysosomes
0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	

Peroxisomes
0.08	 0	 0	 0	 0	 0	 0	 0.77	 0	 0.08	 0.08	

RNP bodies
0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	

Recycling Endosomes
0	 0	 0	 0	 0	 0	 0	 0	 0	 1	 0	

Retromer
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	

Overall	accuracy:		
A-431	 0.73	
U-2	OS	 0.90	
U-251	MG	 0.86	

	 	
	



Example	synthetic	cell	image	with	
11	punctate	organelles	

	



MODELING	SUBCELLULAR	
DISTRIBUTION	CHANGES	DURING	CELL	
SIGNALING	



	



Background	
•  T	cells	bind	to		APC	cells	
triggering	stimulation	

•  Actin	and	its	regulators	
are	recruited	to	the	
interacting	region.		

Huang	&	Burkhardt,	2007	

Question:	how	do	the	
proteins	involved	in	
Actin	dynamics	regulate	
each	other?	
	



Data	

l  We	start	from	DIC	and	fluorescence	movies	of	GFP-
tagged	proteins	at	different	time	points	before	and	
after	immunological	synapse	formation	(~100	cells	
per	protein)	



Image	processing	pipeline	
Images	of	fields	

Segmentation	

Images	of	
individual	cells	

Rigid	alignment	and	
morphing	to	half-ellipsoid	

template	Individual	cells	
with	uniform	

shape	 Parametric	model	
construction	and	

comparison	Protein	
distribution	
models	Top	 Front	

	 	



Summary	of	the	Automatic	analysis	
•  More	than	17,000	cell	pairs	were	analyzed.		
•  Two	conditions:	Full	stimulus,	B7	blockade	
•  Ten	proteins:	ARP3,	Actin,	cofilin,	
Coronin1A,	CPalpha1,	HS1,	MRLC,		WASP,	
WAVE2,	LAT	

42	





Applications	of	the	model	
•  Use	voxel	concentrations	as	features	to	
compare	different	proteins	across	all	time	
points	across	different	conditions	

•  Enrichment	analysis:	see	how	proteins	
accumulate	in	specific	locations	over	time	

•  Visualize	the	spatiotemporal	dynamics	of	
selected	proteins		

44	



Clustering	reveals	differences	



Enrichment	analysis	
•  Actin	is	recruited	to	the	synapse	region,	we	would	like	to	
measure	kinetics	of	recruitment	of	other	proteins	

•  Idea:	define	an	enrichment	region		where	it	contains	the	
top	90%	fluorescence	in	the	average	model	map	for	all	
models.		

•  The	enrichment	is	defined	as	the	ratio	of	the	mean	
intensity	in	the	region	to	the	mean	intensity	out	of	the	
region.	

46	



Enrichment	of	all	proteins	

47	



Several	proteins	have	significant	
enrichment	

WAVE
2	

HS1	

ARP3	Cofilin	

48	



Validation	of	candidate	regulators	
•  We	identified	Wave2	and	cofilin	as	candidate	
regulators	in	costimulation-mediated	Actin	
dynamics.	

•  Question:	could	selective	activation	of	these	
two	regulators	promote	actin	dynamics	and	
synapse	formation	even	under	the	B7	
blockade	condition?	

49	



Reconstruction	

WAVE2	 Actin	
50	



Reconstruction	

51	



Active	Rac	and	cofilin	restore	
defective	LAT	location	

52	



Spatiotemporal	distribution	of	
proteins	

cofilin		MRLC		WAVE2	
53	



Using	Spatiotemporal	Maps	to	Learn	
Putative	Regulatory	Relationships	

•  Given	spatiotemporal	maps	for	multiple		
proteins,	we	sought	to	determine	whether		
a	change	in	one	protein	in	one	region	of		
the	cell	precedes	a	change	in	another		
protein	in	another	region	

•  For	this	we	applied	methods	for	learning		
causal	graph	process	models	

•  Nodes	represent	a	specific	protein	at	a	specific	location,	edges	
represent	a	possible	predictive	relationship	between	nodes	

	



Approach	

55	
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Reducing	graph	size	
•  The	spatiotemporal	maps	have	6628	voxels	per	cell,	and	

there	is	one	map	for	each	of		12	proteins	
•  The	graph	model	requires	an	edge	between	every	pair	of	

nodes:	too	many	edges,	need	to	reduce	the	number	
•  Solution:	represent	each	voxel	by	a	vector	of	the	

intensities	at	all	time	points	for	all	proteins	
•  Use	K-means	clustering	of	voxels	to	form	regions	

•  Represent	each	region	by	the	average	intensity	of	all	
voxels	in	it		

	



Removing	confounding	by	correlations	

•  Highly	
correlated	
proteins/regions	
allow	self	
prediction	

•  Collapse	them	
into	one	
representative	



Causal	graph	process	model	

Given	x[t]	and	M,	find	A	and	c	to	minimize	w[t]	

Let	x[t]	be	concentration	of	all	proteins	in	all	regions	
	
Goal	is	to	find	single	model	to	predict	all	times	

Mei	&	
Moura,	
2015	

We	also	
used	a	
second	
method	
we	
developed	
called	
CENR	



Adjacency	matrix	of	CGP	method	



Summarizing	relationships	
•  We	threshold	the	strength	of	the	relationships,	
(elements	in	the	adjacency	matrices),	and	identify	
the	time	when	each	is	most	strongly	observed.		

	



Evaluation	
•  Make	list	of	known	or	suspected	regulatory	
relationships	from	literature	

				



Evaluation	
•  Measure	how	well	learned	models	capture	
these	known	relationships	using	a	Receiver-
Operator	Curve	(quantitate	by	“Area	Under	the	
Curve”)	

•  Note	some	“False	positives”	may	be	real	
positives	that	are	not	yet	known	

CGP	 CENR	

AUC	 0.709	 0.644	



Evaluation	

•  Data	used	so	far	was	from		
costimulation	conditions	
(stimulation	through	both	TCR		
and	CD28)	

•  Additional	maps	available	for	conditions	where	
CD28	costimulation	is	blocked	(“B7	blocked”)	

X	



Evaluation	
•  Using	the	model	learned	from	costimulation	
condition,	make	predictions	from	early	time	
points	for	blocked	condition	at	later	time	points	

CGP	 CENR	

Prediction	error	from	cross-validation	on	
training	images	(full	stimulation)	

8.6%	 6.9%	

Prediction	error	on	testing	images	
(costimulation	blocked)	

12.0%	 8.5%	



HIERARCHICAL	ASSEMBLY	MODELS	



Spatial	models	
•  Most	of	you	probably	have	
built	models:	LEGO’s,	
K’nex,	etc.	

•  You	get	different	colored	
parts	and	a	set	of	
instructions	

•  The	instructions	are	
hierarchical		









Bayesian	network	/	graphical	model	

•  One	way	to	think	of	this	hiearchical	assembly	
process	is	as	a	graphical	model	

•  Nodes	correspond	to	parts	or	previous	
assemblies	

•  Edges	correspond	to	dependencies	–	parts	
required	to	produce/localize	an	assembly	



nuccellmicrotubule

“vesicle”|
microtubule

+nuc+cell

Bayes	net	for	punctate	organelles	

But	are	nuc,	cell	and	
microtubule	independent	
from	each	other?	
They	are	not	puncta	so	
can’t	estimate	with	point	
process.	

ER

Node	function=point	process	

	Li	et	al	(2016)	Cytometry	



nuccell|nuc

microtub|
nuc+cell

From	other	experiments	
	Johnson	et	al	(2015)		Mol.	Biol.	Cell	

Node	function=growth	model	 Node	function=various	
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Merged	Bayes	net	
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Merged	Bayes	net	

ER



nucleuscell|
nucleus

microtub|
nuc+cell

From	other	modeling…	

ER

Node	function=random	graph	

Protein p|
microtub+!
nuc+cell

p

	Liu-Huang	et	al	(2017)	submitted	



HIGH-THROUGHPUT	CELL	
SIMULATIONS	



High-throughput	spatially	realistic	
simulations	

•  Study	the	effects	of	spatial	variance	caused	by	
–  Cell	cycle	
– Diseases	
– Drugs	
–  Inherent	cell	variance	

•  Model	large	systems	with	high	spatial	realism	
•  Validate	generative	model	accuracies	





“Simple”	biochemical	model	

•  354	reactions		
•  78	species	
•  7	“compartments”	



Selected	geometries	from	shape	
space	



Different	geometries	lead	to	variation	
in	signaling		

Mean	+/-	S.D.	



Conclusions	

Supported	by:	

•  Tools	becoming	available	to	construct	models	of	cell	components	
directly	from	images	

•  Better	comparison	across	instruments/cell	types	
•  Provide	input	geometries	for	cell	simulation	
•  Provide	simulated	images	for	testing	algorithms	
•  Learn	putative	spatiotemporal	causal	relationships	

•  Need	to	combine	images	and	data	from	various	other	experiments	
to	create	overall	spatiotemporal	models	




