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Motivation for studying Cell Decision
Processes
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Signal flow involves interactions and
dynamics at multiple scales
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Rule-Based Modeling: An Intermediate Level
Abstraction for Systems Biology
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Challenges of modeling cell regulatory networks

 Proteins are multi-functional
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 Representing their known interactions requires

States of the Model

handling of combinatorial complexity =
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The model has 354 states (2954 if the ligand was a trimer)

Small number of rules

Small number of components and interactions =2 huge number of possible species and reactions



Combinatorial complexity in a realistic
model of EGFR signaling

ErbB3:ErbB1 has > 3.8x10° states

ErbB1:ErbB1 has > 5.5x10'° states

Creamer et al. (2012) BMC Syst. Biol. [TGen group]




What is Rule-based Modeling (RBM)?

Molecules are modeled as structured objects
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What is Rule-based Modeling (RBM)?

Rules define the interactions of molecules

“Lyn SH2 domain binds to phosphorylated Tyr 218 on the B subunit of FceRI”

Reactants Products Rate Law
1 1

Lyn
A

L?N(SHz) + FceRI(bY 218-P) <-> LYN(SH2!1).FceRI(bY 218~P11) kpL, kmL
T T
FceRl(a _lg,b Y218-0~-P,g ITAM~-0~-P) bond

“Don’t write don’t care” — elements not mentioned may be in any state
=» One rule can generate reactions involving many different species

Reaction rate determined by Mass Action kinetics
rate forward = KpL*[Lyn(SH2)]*[FceR1 (bY_218~P)]



Basic RBM Workflow with BioNetGen

Rule-based models can be simulated using many different
approaches
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“Network-based” vs. “network-free”

BioNetGen language file
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Basic RBM Workflow with BioNetGen -

Network-free simulation enables scalable simulation as

network size increases
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Closed-loop systems biology

Construct model
based on known
and hypothesized

interactions.
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BioNetGen and associated modeling tools
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Harris, Hogg, et al. (2016) Bioinformatics, 32 (21): 3366-3368.



Growing number of applications

Models page at bionetgen.org currently lists > 40 papers

4" Published BioNetGen Models  x James
& C 1t | @ bionetgen.org/index.php/Published_BioNetGen_Models | B8 &
25 Apps Course Links [] CSB & Entrez PubMed [1]] Google Scholar Funding ;" BioNetwiki ScienceBlogs @ Amazon ({) spatiaimodel » Other Bookmarks

2 Faeder mytalk preferences my watchlist my contributions log out

article | discussion | | edit || histary || protect || delete || move | | watch |
Published BioNetGen Models

This page links to publications that have applied a BioNetGen rule-based model to a specific biclogical system.

Help keep this page current by sending your publications to faeder @pitt.edu =1,

This page does not have links to BNGL files, generic models, toy models, unpublished models, models used to showcase software methods or models in other rule-based
languages.

2017

= Relaxation oscillations and hierarchy of feedbacks in MAPK signaling. & Sci Rep. (NPG)
= RAF1/BRAF dimerization integrates the signal from RAS to ERK and ROKa. 2} Sci Signal.
2016

= Modelling intracellular competition for calcium: kinetic and thermodynamic control of different molecular modes of signal decoding. &' Sci Rep. (NPG)
= Feedbacks, Bifurcations, and Cell Fate Decision-Making in the p53 System. & PLoS Comput Biol.
2015

= Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling. & PLoS Comput Biol.
= Use of mechanistic models to integrate and analyze multiple proteomic datasets. &' Biophys J.
= Cutting Edge: Differential Regulation of PTEN by TCR, Akt, and FoxO1 Controls CD4+ T Cell Fate Decisions. & J Immunol.
= Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1. g PLoS One.
= Analytical reduction of combinatorial complexity arising from multiple protein modification sites. & J R Soc Interface.
2014

= Multi-level kinetic model of mANA delivery via transfection of lipoplexes. & PLoS One.

= Phosphorylation site dynamics of early T-cell receptor signaling. & PLoS One.

= Biosensor architectures for high-fidelity reporting of cellular signaling. & Biophys J.

= An Interaction Library for the FceRI Signaling Network. ¢ Front Immunol.

= Recruitment of the adaptor protein Grb2 to EGFR tetramers. & Biochemistry (ACS).
2013

= Spatial rule-based modeling: a method and its application to the human mitotic kinetochore. g Cells {MDP!).

= Spontaneous NF-kB activation by autocrine TNFa signaling: a computational analysis. & PLoS One.

= Pleomorphic ensembles: formation of large clusters composed of weakly interacting multivalent molecules. & Biophys J.

= Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells. & PLoS Comput Biol.

= Prediction stability in a data-based, mechanistic model of oF regulation during sporulation in Bacillus subtilis. & Sci Rep (NPG).

» Exploring higher-order EGFR oligomerisation and phosphorylation--a combined experimental and theoretical approach. &7 Mol Biosyst.




Software tools that
integrateBioNetGen/NFsim
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Why use RBM?

Concise and precise representation of
biochemical knowledge

— rules are simple (less context) when inte
modular

ractions are

Flexible with respect to simulation method

— Deterministic / stochastic
— Well-mixed / compartmental / spatial

Structures and rules are reusable
— Rule libraries

Compact visual representation
— Contact map and beyond
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Development of network-free MCell

Beyond a well-mixed cell....

McCell
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Atomizer can recover implicit
molecular structure reaction networks

. Reaction
stoichiometry
. Naming
conventions
. Annotation

RNM model
0=+ A

Naming conventions

[x,x_P] Phosphorylation

RBM dictionary
A: A(b,d,p~U)
B: B(a)

C: A(b!1,d,p~U).
B(a!l)

A: A(b,d,p~P)

1

ﬂml&l
P
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Tapia and Faeder (2013) Proc. ACM-BCB.



Automating structure recovery

v
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* Find the implicit assumptions
e Automate study of relaxing model assumptions




Visualizing rule-based models

Autophagy network
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Szymanska et al. (2015), PLOS One

Rule-based model

R1: rapa(mtor)+MTOR(HEAT,FRB)<->rapa(mtor!1).MTOR(HEAT,FRB!1) al,d1

'R3p:;[RPTO

John Sekar
Jose Juan Tapia

Rules are code!
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Why rule visualization is essential

Debugging

Model reuse / sharing
Communicating with
collaborators

Model comparison
Model integration

R13e: RPTOR(S855_S859~PP)->RPTOR(S855_S859~F.,,
R13f: AMBRAL(ST~P)->AMBRAL(ST~O) u0

R13g: AMPK(ST~P)->AMPK(ST~O) u2

R13h: ULK1(straptor,S317~P)->ULK1(straptor,S317~0) u0
R13i: ULK1(S778~P)->ULK1(S778~0) u0

R13j: RPTOR(S792~P)->RPTOR(S792~0) u0




Automated rule visualization
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Compact rule visualization Regulatory graph



Model Calibration with Bayesian Parameter Estimation

Experimental “Affinity maturation on
Data parameters to get best
fitting models.”
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A quick RuleBender demo

 To download RuleBender go to
http://bionetgen.org/Download

* To find files for this and many other examples,
go http://bionetgen.org/Tutorials
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