Atomizer

Jose Juan Tapia Valenzuela University of Pittsburgh

What's in a model?

What's in a model means...

- I want to **understand** a model in the literature
- I want to **compare** a model against others in the literature
- I want to **reuse** models in the literature

What's in a model? Model Paper Annotation information NOTE AND ASSESSED ASSESSED AND ASSESSED AND ASSESSED ASSESSED AND ASSESSED ASSESSEDANCE ASSE

The challenges of model understanding are...

- How are elements inside a model related to each other?
- How do elements in a model compare to elements in other models?
- How do elements in a model compare to real-world objects?

The challenges of model understanding are...

- How are elements inside a model related to each other?
- How do elements in a model compare to elements in other models?
- How do elements in a model compare to real-world objects?

A pure RNM representation makes this a non-trivial problem...

$$A + B \rightarrow X A_B$$
 $A \rightarrow B$

It gets more interesting....

Some of these questions can be answered through model visualization

Standard visualization methodologies

Entity-relationship diagrams

Process diagrams

Activity flow diagrams

So we ask...

Does this scale for large models?

What happens if I want to understand and compare a large number of models?

Toward "model informatics"

There's a limit to what we can understand without computer assistance.

A model description should enable (semi) automated analysis of a single model and comparison with other models.

It gets more interesting....

 $A B + D \rightarrow A B D$

These questions should be answerable from the model description alone

Standard visualization methodologies

Enter Rule-based modeling

Presenting...

RBM

Atomizer

RNM

Now without the cats

Motivational example

BIOMD48 (Kholodenko B. 1999)

Magic!

Motivational example (2)

Schoeberl et al.

BIOMD19 atomized

Comparison

BIOMD 19 BIOMD 48

Demo

BMD 569

Ligand-Dependent Opening of the Multiple AMPA Receptor Conductance States: A Concerted Model

https://www.ebi.ac.uk/biomodels-main

Or Google for BioModels database