Introduction to Rule-Based Modeling of Biochemical Systems with BioNetGen and RuleBender

Jim Faeder, Ph.D. Univ. of Pittsburgh, MMBioS

MCell Workshop Pittsburgh Supercomputing Center April 28-30, 2014 **Biomedical Technology Research Center (BTRC)**

High Performance Computing for Multiscale Modeling of Biological Systems

Overarching biological theme:

Spatial organization
 Temporal evolution

of (neuro)signaling systems/events

From small molecules, to multimeric assemblies,

to cellular architecture,

from 6 x 6 x 5 µm³ ample of adult rat hipposampal stratum radiatum neuropil

to neural circuits

Role of MCell in the BTRC

Comparison of MCell with other tools for spatial modeling of biological systems

Motivating example for Rule-Based Modeling

Molecular machines in the PSD

Estimated number of states of CAMKII-CaM complexes:

40¹²

Standard modeling protocol

1. Identify components and interactions.

2. Write model reactions / equations

 $\begin{array}{c} \text{Reaction} \\ \text{Network} \end{array} \dot{\mathbf{x}} = \mathbf{S} \cdot \mathbf{v}(\mathbf{x}) \\ \end{array}$

3. Determine concentrations and rate constants

10 nM

3 x 10⁴ per cell

4 x 10⁵ per cell

Reactions to Differential Equations

Consider the reaction

$$R + L \xrightarrow{k_1} RL$$

The reaction rate is given by

$$v_1 = k_{k} R \cdot L$$

Rate of change of species concentrations (numbers) are

Here I have indicated that there may be additional terms from other reactions in the network. Reaction fluxes combine through *addition*.

Reaction Network Models

Reaction Network Scheme

Mathematical Formulation

Rate Equations

 $k_1 \cdot [R] \cdot [EGF] - k_{-1} \cdot [R_a]$ $k_2 \cdot [\mathbf{R}_a] \cdot [\mathbf{R}_a] - k_{-2} \cdot [\mathbf{R}_2]$ $k_3 \cdot [\mathbf{R}_2] - k_{-3} \cdot [\mathbf{RP}]$ $V_4 \cdot [\overline{\text{RP}}]/(K_4 + [\text{RP}])$ $k_5 \cdot [\text{RP}] \cdot [\text{PLC}\gamma] - k_{-5} \cdot [\text{R-PL}]$ $k_6 \cdot [\text{R-PL}] - k_{-6} \cdot [\text{R-PLP}]$ $k_7 \cdot [\text{R-PLP}] - k_{-7} \cdot [\text{RP}] \cdot [\text{PLC}_{\gamma}\text{P}]$ $V_8 \cdot [\text{PLC}\gamma\text{P}]/(K_8 + [\text{PLC}\gamma\text{P}])$ $k_{9} \cdot [\text{RP}] \cdot [\text{Grb}] - k_{-9} \cdot [\text{R-G}]$ $k_{10} \cdot [\text{R-G}] \cdot [\text{SOS}] - k_{-10} \cdot [\text{R-G-S}]$ $k_{11} \cdot [\text{R-G-S}] - k_{-11} \cdot [\text{RP}] \cdot [\text{G-S}]$ $k_{12} \cdot [\text{G-S}] - k_{-12} \cdot [\text{Grb}] \cdot [\text{SOS}]$ $k_{13} \cdot [\text{RP}] \cdot [\text{Shc}] - k_{-13} \cdot [\text{R-Sh}]$ $k_{14} \cdot [\text{R-Sh}] - k_{-14} \cdot [\text{R-ShP}]$ $k_{15}^{14} \cdot [\text{R-ShP}] - k_{-15}^{14} \cdot [\text{ShP}] \cdot [\text{RP}]$ $V_{16} \cdot [\text{ShP}]/(K_{16} + [\text{ShP}])$ $k_{17} \cdot [\text{R-ShP}] \cdot [\text{Grb}] - k_{-17} \cdot [\text{R-Sh-G}]$ k_{18} · [R-Sh-G] – k_{-18} [RP] · [Sh-G] $k_{19} \cdot [\text{R-Sh-G}] \cdot [\text{SOS}] - k_{-19} \cdot [\text{R-Sh-GS}]$ $k_{20} \cdot [\text{R-Sh-G-S}] - k_{-20} \cdot [\text{Sh-G-S}] \cdot [\text{RP}]$ $k_{21} \cdot [\text{ShP}] \cdot [\text{Grb}] - k_{-21} \cdot [\text{Sh-G}]$ $\begin{array}{l} k_{22} \cdot [\text{Sh-G}] \cdot [\text{SOS}] - k_{-22} \cdot [\text{Sh-G-S}] \\ k_{23} \cdot [\text{Sh-G-S}] - k_{-23} \cdot [\text{Sh-P}] \cdot [\text{G-S}] \end{array}$ $k_{24}^{26} \cdot [\text{R-ShP}] \cdot [\text{G-S}] = k_{-24} \cdot [\text{R-Sh-G-S}]$ $k_{25}^{24} \cdot [\text{PLC}\gamma\text{P}] - k_{-25} \cdot [\tilde{\text{PLC}}\gamma\text{P-I}]$

Differential Equations

 $d[EGF]/dt = -v_1$ $d[R]/dt = -v_1$ $d[R_a]/dt = v_1 - 2v_2$ $d[R_2]/dt = v_2 + v_4 - v_3$ $d\mathbf{RP}/dt = v_3 + v_7 + v_{11} + v_{15} + v_{18} + v_{20} - v_4 - v_5 - v_9$ $d[R-PL]/dt = v_5 - v_6$ $d[R-PLP]/dt = v_6 - v_7$ $d[R-G]/dt = v_9 - v_{10}$ $d[R-G-S]/dt = v_{10} - v_{11}$ $d[R-Sh]/dt = v_{13} - v_{14}$ $d[R-ShP]/dt = v_{14} - v_{24} - v_{15} - v_{17}$ $d[R-Sh-G]/dt = v_{17} - v_{18} - v_{19}$ $d[R-Sh-G-S]/dt = v_{19} - v_{20} + v_{24}$ $d[G-S]/dt = v_{11} + v_{23} - v_{12} - v_{24}$ $d[ShP]/dt = v_{15}^{11} + v_{23}^{12} - v_{21}^{12} - v_{16}^{12}$ $d[Sh-G]/dt = v_{18} + v_{21} - v_{22}$ $d[PLC\gamma]/dt = v_8 - v_5$ $d[PLC\gamma P]/dt = v_7 - v_8 - v_{25}$ $d[PLC\gamma P-I]/dt = v_{25}$ $d[Grb]/dt = v_{12} - v_9 - v_{17} - v_{21}$ $d[Shc]/dt = v_{16} - v_{13}$ $d[SOS]/dt = v_{12} - v_{10} - v_{19} - v_{22}$

22 species / 25 reactions

Kholodenko et al., J. Biol. Chem. (1999)

Combinatorial complexity in a prototypical signaling module

Combinatorial Complexity

Rules provide a scalable way to model molecular interactions

Rules ~ number of interactions << number of species

Rule-Based Modeling: An Intermediate Level Abstraction for Systems Biology

Gln 61

abstraction level

Rule-Based Modeling: An Intermediate Level Abstraction for Systems Biology

Reaction Networks

Rule-Based Modeling

Abstraction that matches signaling knowledge.

Molecular Dynamics

Rules Describe Local Interactions

Simple Binding/Unbinding Rule

Only requirement is that both binding sites be free.

One Rule May Generate Many Reactions

Simple Binding/Unbinding Rule

Rules Have Two Parts

Binding/Unbinding Rule with context

Binding now requires additional properties of A.

Simple rules generate more reactions and species – possible combinations of A and B.

More specific rules require additional knowledge, e.g., cooperative or allosteric effects.

Standard Approach Involves Hidden Assumptions

Simple Binding/Unbinding Rule

Standard Approach Involves Hidden Assumptions

Simple Binding/Unbinding Rule

Phosphorylation Rule with Context

L binding is required for phosphorylation

Rules provide a scalable way to model molecular interactions

Rules ~ number of interactions << number of species

Rule-Based Modeling protocol

1. Identify components and interactions.

2. Translate into objects (molecules) and rules

10 nM 4 x 10⁵ per cell

3 x 10⁴ per cell 4 x 10⁵ per cell

- 3. Determine concentrations and rate constants
- 4. Simulate and analyze the model

Composition of a Rule-Based Model

a Components

b Interactions

Transphosphorylation

Molecules

begin molecules Lig(1,1) Lyn(U,SH2) Syk(tSH2,1~U~P,a~U~P) Rec(a,b~U~P,g~U~P) end molecules

Reaction Rules

BioNetGen language

```
begin reaction_rules
# Ligand-receptor binding
1 Rec(a) + Lig(1,1) <-> Rec(a!1).Lig(1!1,1) kp1, km1
Rec(a) + Lig(1,1) <-> Rec(a!1).Lig(1!1,1) kp1, km1
```

Receptor-aggregation
2 Rec(a) + Lig(1,1!1) <-> Rec(a!2).Lig(1!2,1!1) kp2,km2

Constitutive Lyn-receptor binding
3 Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2) kpL, kmL

•••

SPECIFYING A RULE-BASED MODEL

Defining Molecules

Molecules are the basic objects in a BNG model

BIONETGEN Language

IgE(a,a)
FceRI(a,b~U~P,g2~U~P)
Lyn(U,SH2)
Syk(tSH2,lY~U~P,aY~U~P)

Components represent molecule elements

- Domains
- Motifs
- Properties

Defining Molecules

Molecules are the basic objects in a BNG model

BIONETGEN Language

IgE(a,a)
FceRI(a,b~U~P,g2~U~P)
Lyn(U,SH2)
Syk(tSH2,lY~U~P,aY~U~P)

Components may have different states representing

- posttranslational modifications
- conformational state

• ...

Binding

Molecules bind other molecules through components

IgE dimer

BIONETGEN Language

$$IgE(a,a!1)$$
.FceRI $(a!1,b~U,g2~U)$

Bonds are formed by linking two components. The '.' indicates a set of molecules forming a complex.

Components may have both states and bonds.

Lyn(SH2!1,Cterm~P!1)

Bonds may occur within a molecule.

Defining Interaction Rules

BIONETGEN Language

 $IgE(a, \underline{a}) + FCeRI(\underline{a}) < -> IgE(a, \underline{a!1}).FCeRI(\underline{a!1})$

binding and dissociation

Transphosphorylation

...

Lyn(U!1).FceRI(b!1).FceRI(<u>b~U</u>)-> \
Lyn(U!1).FceRI(b!1).FceRI(<u>b~P</u>)

component state change

Reactant patterns

select properties of each reactant molecule.

Reactant patterns

select properties of each reactant molecule.

Reactant patterns

select properties of each reactant molecule. Because patterns can match many different species, each rule can generate many reactions.

Center and context

The **context** is the part that is necessary for the rule to happen but is unchanged.

Center and context

The **context** is the part that is necessary for the rule to happen but is unchanged.

Transphosphorylation

Composition of a Rule-Based Model

a Components

b Interactions

Transphosphorylation

Molecules

begin molecules Lig(1,1) Lyn(U,SH2) Syk(tSH2,1~U~P,a~U~P) Rec(a,b~U~P,g~U~P) end molecules

Reaction Rules

BioNetGen language

```
begin reaction_rules
# Ligand-receptor binding
1 Rec(a) + Lig(1,1) <-> Rec(a!1).Lig(1!1,1) kp1, km1
Rec(a) + Lig(1,1) <-> Rec(a!1).Lig(1!1,1) kp1, km1
```

Receptor-aggregation
2 Rec(a) + Lig(1,1!1) <-> Rec(a!2).Lig(1!2,1!1) kp2,km2

Constitutive Lyn-receptor binding
3 Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2) kpL, kmL

•••

Applications

- Immunoreceptor Signaling
- Growth factor receptor signaling
- Multivalent binding
- Scaffold effects
- Yeast pheromone signaling
- For a complete list of BioNetGen Applications see http://bionetgen.org/Model Examples.

SIMULATING A RULE-BASED MODEL

Basic RBM workflow with BioNetGen

http://bionetgen.org

Faeder, Blinov, and Hlavacek, Methods Mol. Biol. (2009)

Automatic Network Generation

FceRI Model

Automatic Network Generation

FceRI Model

NFSIM*

Network-Free Stochastic Simulator

Sneddon et al. (2011) Nat. Methods, 8, 177

http://emonet.biology.yale.edu/nfsim/

FceRI signaling models

Integration with **BIONETGEN**

Large Scale TCR Signaling Model

RuleBender

Built in Eclipse RCP

http://rulebender.org

Xu et al. Bioinformatics (2011); Smith et al. BioVis12 (Best Paper); BMC Bioinformatics (2012)

HANDS-ON TUTORIAL

Dimerization Model

Outer wall (wall)

Compartment Specification

begin compartments wall 2 vol_wall EC 3 vol_EC wall PM 2 vol_PM EC CP 3 vol_CP PM end compartments

Volume of surface compartment = Area*thickness thickness = 10 nm = 0.01 μ m

Import of Rule-Based Models into MCell

Topology

Diffusion of complexes

See Poster by Jose-Juan Tapia and Dipak Barua for more details

Example: Comprehensive FceRI signaling model

Faeder et al., J. Immunol, 2003, Vol. 7, 3769 - 3781

Snapshot from simulation of the translated spatial model

Comprehensive FceRI signaling model:

Solid lines - cBNG ODE simulations Broken lines – MCell simulations

μ - Membrane viscosity, cp D - Diffusivity of single receptor, cm2/s (Saffman-Delbrück)

BACKUP EXAMPLE

parameters

molecule types

A BioNetGen model consists of a set of blocks, each beginning and endingseed specieswith begin <blockname> / end <blockname> respectively.

observables

functions

reaction rules

parameters

molecule types

seed species

<u>parameters</u> – model constants are defined here. *The user is responsible* for using a consistent set of units, which should be indicated in the associated comments.

observables

functions

reaction rules

parameters

end parameters

parameters

molecule types

<u>molecule types</u>– molecules, their components, and their allowed component states are declared here.

seed species

observables

functions

reaction rules

parameters

observables

functions

reaction rules

parameters

molecule types

seed speciesseed species- species initially present in the system at time t=0
followed by their initial concentration. Standard is all molecule
types in their "ground state" with basal expression levels. May
include complexes. All components of molecules that have states
must be in a specified state. All complexes must be connected.

functions

reaction rules

parameters

molecule types

seed species

observables

	begin see	ed species
functions	E(s)	ΕO
	S(Y~0)	S0
	end seed	species

reaction rules

parameters

molecule types

seed species

<u>observables</u>– Defined sums of concentrations of species with specified properties. Syntax is <type> <name> <pattern>. Types considered here are Molecules and Species, which indicate weighted and unweighted sums respectively. These are used to define model outputs and are used as to make the default plot in RuleBender.

observables

functions

reaction rules

parameters

begin observables

seed species

Molecules SU S(Y~0) Molecules SP S(Y~P) Molecules ES E(s!1).S(Y!1) end observables

observables

functions

reaction rules

parameters

SU = sum of concentration of matches = $[S(Y \sim 0)]$

parameters

ES = sum of concentration of matches = $[E(s!1).S(Y \sim 0!1)]$

parameters

molecule types

seed species

<u>reaction rules</u>– Rules that generate reactions based on selecting reactants with specified properties and transforming them in a specified way with the specified rate law. Syntax is <name>: <reactants> <arrow> <products> <rate law>. Name is optional but useful.

observables

functions

reaction rules

parameters

molecule types

seed species	begin reaction rules
observables	ESbind: \ E(s) + S(Y~0) <-> E(s!1).S(Y~0!1) kp1, km1
functions	ESconvert: \ E(s!1).S(Y~0!1) -> E(s) + S(Y~P) k2
reaction rules	end reaction rules

parameters

$$E+S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E+P$$

molecule types

<u>actions</u>– Need not be enclosed in block. Come after model definition and specify simulation protocol for a model.

seed species

```
generate_network({});
simulate_ode({t_end=>1000,n_steps=>100});
```

observables

functions

reaction rules