Druggability & DruGUI

Ahmet Bakan ahb12@pitt.edu

Department of Computational and Systems Biology

Target Druggability

Can a given biological target, such as a protein,

bind with *high affinity* to a drug?

Druggable or not?

Target Druggability

Druggable Genome

All disease modifying genes are not druggable

Hopkins and Groom, Nat Reviews Drug Disc, 2002

Why drugs bind proteins?

cMET and Crizotinib (FDA approval in 2011)

Druggability from Experiments

X-ray crystallography

 protein structure is solved in presence of small organic molecules

Mattos and Ridge, Nat Biotechnology, 1996

NMR screening

 compounds from a fragmentlibrary are screened as mixtures of 20-30 compounds, druggability is calculated from chemical shift perturbations

Hajduk et al., J Med Chem, 2005

Structure-based Druggability

- Solvent/Probe Docking •
 - isopropanol, acetone, ethane, benzene, etc —

А

С

D

Miranker and Karplus, Proteins, 1991 Schmidtke and Barril J Med. Chem. 2010, 53, 5858-5867. Brenke et al., Bioinformatics 2009, 25, 621-627.

Structure-based Druggability

Cheng, A. C. et al. (2007). Nature biotechnology, 25(1), 71–5.

MD snapshot evaluation

Not druggable

Druggable

Brown and Hajduk, *Chem Med Chem*, 2006 Lexa and Carlson *J Am. Chem. Soc.* **2010**, *133*, 200-202. Ivetac and McCammon *Chem. Biol Drug Des* **2010**, *76*, 201-217.

Probe Simulations

Mimicking Drugs

Fragment name	1341 approved drugs
Isobutane	1022 (76%)
Isopropanol	768 (57%)
Isopropylamine	337 (25%)
Acetic acid	284 (21%)
Acetamide	280 (21%)
Acetone	239 (17%)
Urea	61 (5%)
DMSO	37 (2%)

35% of orally available drugs are neutral 65% are charged or zwitterionic

Leeson, P. D.; St-Gallay, S. A.; Wenlock, M. C. *Med. Chem. Commun.* **2011**, *2*, 91-105.

eg5 Kinesin Simulations

eg5 has a role in cell division and is an anti-cancer target

eg5 structure immersed in probes and water

eg5 Kinesin Simulation

Trajectory Analysis

Probe Binding Site Identification

Ligand Efficiency

Hopkins, A., & Groom, C. (2004). Ligand efficiency: a useful metric for lead selection. *Drug Discovery Today*, *9*(10), 430-431. Kuntz, I. D., Chen, K., Sharp, K. a, & Kollman, P. a. (1999). The maximal affinity of ligands. *PNAS*, *96*(18), 9997-10002.

Distribution of ΔG_{probe}

Druggability Index (or Maximal Affinity)

 $\Delta G_{achievable by a drug}$ correlates with sum of $\Delta G_{probe binding}$ of 7-8 proximal probes

Druggable or not?

Kinesin Eg5 has a druggable allosteric site. eg5 has a role in cell division and

\triangleright	Best known K _d	0.2 nM
\triangleright	Simulation	0.3 nM

eg5 Druggable Sites

Eg5-Tubulin Interface

Human kinesin and tubulin structures docked into an EM model at 9 Å resolution

Druggable or not?

MDM2 is a negative feedback regulator of the

Biochemistry 2004, 43, 2394-2404

Druggable or not?

p38 Binding Sites

J Med. Chem. 2010, 53, 2973-2985

p38 MAP kinases are responsive to stress stimuli and are involved in cell differentiation and apoptosis.

Unbound PDB id: 1p38 Ligand bound: 3bv2

p38 – MK2 Interface

Druggability Index (or Maximal Affinity)

Target	Binding site	Best K _d /IC ₅₀	Isopropanol	Probe mixture
MDM2	p53	0.6 nM	0.4-1.0 nM	0.3-2.0 nM
PTP1B	pTyr	2.2 nM	Nd	0.3-0.9 nM
	allosteric ^d	8 μΜ	0.2 μΜ	6-72 μM
LFA-1	induced	18.3 nM	0.5-0.8 nM	0.03-0.5 nM
Eg5	allosteric ^d	0.2 nM	27 nM	0.3 nM
	tubulin site	Na	2 nM	0.2 nM
p38	ATP	0.05 nM	1-2 nM	0.01-0.12 nM
	MK2 site	na	2-3 nM	2-3 nM
	MAPK insert	na	13-90 nM	5-210 nM

Cyt c Inhibitor Discovery

When bound to CL, cyt c gains peroxidase activity that contributes its apoptotic release

> Kagan et al., Free Radical Biology and Medicine, 2009

How Druggable is Cyt c?

Probes molecules to Cyt c's taste

In silico screening

DruGUI Demo

DrugGUI

	Druggability GUI v1.0 - + >	¢			
? Protein structur ?PSF: ?PDB: Load r	•1) Prepare System - 2) Calculate Grids 3) Assess Druggability Browse 4) Evaluate a Site Browse 5) Visualize Results 5) Visualize Results	-			
Probe compositio	n:	_			
<pre>% Isopropanol: % Isobutane: % Acetamide: ?% Acetate(-) + ? Total of probe</pre>	70 +10 +5 0 -5 -10 0 +10 +5 0 -5 -10 10 +10 +5 0 -5 -10 Isopropylamine(+): 20 +10 0 -10 percentages: 100 0 -10				
Solvation and ionization options:					
Simulation box padding (A): 6 2]Add counter ions: ♥					
-Output options:- ?Output folder: ?Output prefix: ?Number of sims ?Additional parameters:	Browse ?Write NAMD input: ▼ :1 ?Sim length (ns): 40 Add Remove				
	Prepare System				

Potential use cases

Identify druggable or ligandable sites

Identify protein interfaces

Develop pharmacophores