Part III – Towards in silico Cells: Simulating processes in entire cells Zaida (Zan) Luthey-Schulten

Dept. Chemistry, Physics, Beckman Institute, Center for Biophysics, and

Carl Woese Institute of Genomic Biology, UIUC

NIH Computational Biophysics Workshop, Pittsburgh, June 6-8, 2016 with **Mike Hallock and Joe Peterson**

Biological Modeling at Different Scales

Interactions span many orders of magnitude in space and time

Whole Cells and Colonies

Probability of Cellular State Stochastic Dynamics

<u>Chemical Master Equation – Well-stirred reactions (Gillespie SSA)</u>

$$\frac{dP(\vec{x},t)}{dt} = \sum_{r}^{R} -a_{r}(\vec{x})P(\vec{x},t) + a_{r}(\vec{x}-\vec{s}_{r})P(\vec{x}-\vec{s}_{r},t)$$
 State x (# mRNA,O,I...)

<u>Reaction-Diffusion Master Equation (RDME)</u>

Noisy cell in sea of IPTG

Stochastic Cell Simulations

Promotes Integration of Theory and Experiments

- Packing & Diffusion Data < > SRI, CET, -omics
- Reactions & Parameters < > Biochem, SM, MD
- RDME Cell Model Simulations < > Lattice Microbe Multi-GPU Code over cell cycles
- Population (Constrained) FBA: Steady-state fluxes in cellular networks and growth rate distributions > *E. coli*, yeast, *M. mycoides*, stem cells, *M. acetivorans*
- Hybrid Reaction/Diffusion/FBA Models < > Cell Colonies

Software Released through http://www.scs.illinois.edu/schulten/lm/ and NIH Center for Macromolecular Modeling and Bioinformatics at Beckman Institute

2014-2016 Achievements with LM

- Built on GPUs from ground up
- 300X's faster than other codes
- Runs on Multi-GPUs systems
- Hour long bacterial cell simulations
 with molecular crowding

Systems Biology Population FBA – 2013/2016

- P. Labhsetwar, J. Cole, Z. Luthey-Schulten, PNAS 2013 (Ecoli)
- P. Labhsetwar, et al. (2016 submitted) (Yeast/C13 Fluxes)

Time scale separations – 2014

- Cole, Luthey-Schulten, Whole Cell Modeling: From Single Cells to Colonies Isr. J. Chem., 2014, (Nobel Prize Symposium Now&Then)
- Cole, Hallock, Labhsetwar, Peterson, Stone, ZLS in *Computational Systems Biology: From Molecular Mechanisms to Disease*, Eds. Kriete and Eils, Elsevier, 2014

Multi-GPU code for yeast & human cells- 2014/16

- Hallock, Stone, Roberts, Fry, ZLS, Parallel Computing, 2014
- Hallock & ZLS, Parallel & Distr. Comp. (IEEE Workshop), 2016

Metabolic Reprogramming <-> Colony – 2015 ...

• J. Cole et al., Spatially resolved metabolic co-operativitiy within dense bacterial colonies. *BMC Sys Bio. 2015*

Ribosome Biogenesis<-> Cell Division – 2014-16 ...

- Kim, ... ZLS, T. Ha, S. Woodson, Nature, 2014 (MD/Exp)
- T. Earnest, .. J. Williamson, ZLS, BPJ 2015 (LM/Exp)
- Earnest, ... Kuhlman, ZLS (2016 in revision) (LM/Theory/Exp)

DNA Replication <-> mRNA and sRNA - 2015 ...

• J. Peterson, J. Fei, Tj Ha, ZLS PNAS 2015 (LM/Theory/Exp)

2015 Major Achievements Combining experiments, theory, & simulations

Kinetic Model of lac Genetic Switch

Reaction	Param	Stochast	tic Rate	Units	Source ^a	
Lac operon regulation	1					K – in vitro kinetic experiment
$R_2 + O ightarrow R_2 O$	k_{ron}	2.43e+06		$M^{-1}s^{-1}$	М	
$IR_2 + O \rightarrow IR_2O$	k_{iron}	1.21e	+06	$M^{-1}s^{-1}$	M	
$I_2R_2 + O \rightarrow I_2R_2O$	k_{i2ron}	2.43e	+04	$M^{-1}s^{-1}$	M	
$R_2 O ightarrow R_2 + O$	k_{roff}	6.30e-04		s^{-1}	S	S – single molecule experiment
$IR_2O \rightarrow IR_2 + O$	k_{iroff}	6.30e-04		s ⁻¹	S	
$I_2 R_2 O \to I_2 R_2 + O$	k_{i2roff}	3.15e-01		s^{-1}	M	
Transcription, translation, and degredation						M – model parameter fit to
$O \rightarrow O + mY$	k_{tr}	1.26e-01		s^{-1}	M	single-molecule distributions
$mY \rightarrow mY + Y$	k_{tn}	4.44e-02		s ⁻¹	S	
mY ightarrow arnothing	k_{degm}	1.11e-02		s^{-1}	S	N4
$Y \to \varnothing$	k_{degp}	2.10e-04		s^{-1}	M	
Lac inducer-represso	r interactions	TMG	IPTG		TMG IPTO	
$I+R_2 ightarrow IR_2$	k_{ion}	2.27e+04	9.71e+04	$M^{-1}s^{-1}$	MK	
$I + IR_2 \rightarrow I_2R_2$	k_{i2on}	1.14e+04	4.85e+04	$M^{-1}s^{-1}$	M K	
$I + R_2 O \rightarrow I R_2 O$	k_{iopon}	6.67e+02	2.24e+04	$M^{-1}s^{-1}$	MK	Uninduced state
$I + IR_2O \rightarrow I_2R_2O$	k_{i2opon}	3.33e+02	1.12e+04	$M^{-1}s^{-1}$	M K	▲
$IR_2 \rightarrow I + R_2$	k_{ioff}	2.00e-01		s ⁻¹	ĸ	
$I_2R_2 ightarrow I + IR_2$	k_{i2off}	4.00€	ə-01	s ⁻¹	K	J.
$IR_2O \rightarrow I + R_2O$	k_{iopoff}	1.00e+00		s ⁻¹	K	
$I_2 R_2 O \rightarrow I + I R_2 O$	$k_{i2opoff}$	2.00e+00		s^{-1}	K	inducer
Inducer transport						
$I_{ex} \rightarrow I$	k_{id}	2.33e-03		s^{-1}	K	
$I ightarrow I_{ex}$	k_{id}	2.33e-03		s^{-1}	K	
$Y + I_{ex} \to YI$	k_{yion}	3.03e+04		$M^{-1}s^{-1}$	K	Ribosome
$YI \rightarrow Y + I_{ex}$	k_{yioff}	1.20e-01		s^{-1}	K	Induced state
$YI \to Y + I$	k_{it}	1.20e	+01	s ⁻¹	K	

Roberts, ...ZLS, PloS CompBio 2011

Effect of in vivo crowding on repressor re-binding

E. Roberts, J. Stone, L. Sepulveda, W.M. Hwu, ZLS, IEEE, 2009

A Window into the Cell with VMD

John Cole

Polymerases/ Large Complexes

Motivation: Capture Timescale and Fraction of Cells Undergoing Phenotypic Switching

Experimental data from Choi, Cai, Frieda, Xie (2008) Science

Simulations from Roberts, Magis, Ortiz, Baumeister, ZLS *PloS Comp. Biol. 2011*

Switching in Fast Growing E. coli Cells – Bursting of mRNA

In vivo – Slow Growing E. coli

Lifetimes Repressor-Operator Complexes

Localization of mRNA

Molecular Signatures in Evolution of Translation Kinetic Model Ribosome Biogenesis

Universal Phylogenetic Tree

Dynamical function of ribosomal signatures: idiosyncrasies in ribosomal RNA and/or proteins characteristic of the domains of life

Roberts, ... Woese, Luthey-Schulten (2008) *PNAS*, Kim,... Luthey-Schulten, Ha, and Woodson "Protein-guided RNA dynamics during early ribosome assembly" (2014) *Nature*

Earnest,Williamson, ZLS "Whole Cell Model of Ribosome Biogenesis" (2015), Biophys. J.

In vitro kinetic model - 30S Assembly at 40 C

In vivo model - 1330 reactions, 251 species

	Reaction	Data source
Assembly	$Sx + I_i \longrightarrow I_{i+1}$	40°C model, no modifications
Degradation	$mRNA \to \varnothing$	From expt. half life
Transcription	DNA \rightarrow DNA + mRNA DNA \rightarrow DNA + rRNA	Chosen to match relative protein abundance
Translation	$30S + mRNA + 50S \rightarrow 30S + mRNA + 50S + n$ Protein	From transcript lengths

Diffusion

 $X_i(\mathbf{x}) \longrightarrow X_i(\mathbf{x} + \boldsymbol{\delta}_i)$

Estimated or from SM