

Overview & Applications

Hands-on Workshop in Computational Biophysics

Pittsburgh Supercomputing Center

June 9, 2016

Full atomic simulations are computationally expensive

Bakan et al. Bioinformatics 2011.

Coarse-grained Elastic Network Models are fast

Elastic Network Model

- Useful for predicting global motions of proteins
- Coarse-grained description (Cα-only usually)
- Residue pairs are connected via elastic springs with unified force constants
- You obtain a unique analytical solution for the spectrum of motion for each system – this is not a simulation

Growth in structural data

ONE HUNDRED THOUSAND PROTEIN STRUCTURES

Biomolecular structures stored in the Protein Data Bank are getting bigger and more complex.

Multiple structures for a single sequence

Dynamics may be inferred from structural data.

Experiment/Theory

Leveraging the PDB since 2010

- High-throughput analysis of structural data
- Application Programming Interface (API) for development of tools
- Suitable for interactive usage

User inputs a sequence

Usage example

>1A9U:A|PDBID|CHAIN GSSHHHHHHSSGLVPRGSHMSQ ERPTFYRQELNKTIWEVPERYQ NLSPVGSGAYGSVCAAFDTKTG

ProDy *identifies*, *retrieves*, *aligns*, and *analyzes* (*PCA*) structures matching input sequence

.

Bakan, Meireles & Bahar. Bioinformatics 2011.

User can

Compare experimental and theoretical models

p38 ensemble

(PCA)

p38 network

model (ANM)

MD trajectory

analysis (EDA)

Sample conformations along normal modes

An Interactive Tool

Suite of tools

Elastic Network Model (ANM/GNM) Analysis Principal component analysis of experimentally resolved structures

Multiple Sequence Alignment Sequence conservation Correlated Mutation

Computational Drug Discovery Binding Site Prediction Affinity Estimation

A VMD plugin Visualization of collective motions Animations/movies

Suite of tools

Modeling coupled protein-lipid dynamics Useful for membrane proteins

Response to external forces Identification of mechanical stiffness

ENM guided MD simulations Efficient sampling of energy landscape

Tutorials: ProDy & Structure Analysis

- Retrieving PDB Files
- BLAST Searching the PDB
- Constructing Biomolecular Assemblies
- Determining functional motions
- Aligning and Comparing Structures
- Identifying Intermolecular Contacts

Tutorial: Elastic Network Models

- Gaussian Network Model (GNM)
- Anisotropic Network Model (ANM)
- Normal Mode Analysis

Tutorial: Trajectory Analysis

- Fast processing of long trajectories
- Enables comparison of MD trajectories and ENM predictions

Tutorial: Ensemble Analysis

- NMR Models
- Homologous Proteins
- Multiple X-ray Structures
- Multimeric Proteins

A better comparison:

Consider more than 2 end points for a given structure, but all the known structures for a given protein, or the structurally resolved

Ensemble of structures

What is Ensemble Analysis?

Principal component analysis

Input:

An ensemble of structures for a given protein

- NMR models (~40)
- X-ray structures resolved under different conditions (ligand-bound/unbound, different stages of molecular machinery or transport cycle
- MD snapshots/frames

Output:

Principal modes of conformational

- variations/differences between NMR models
- rearrangements/changes under different functional states
- dynamics/fluctuations observed in simulations

What is Ensemble Analysis?

• Method:

- Superimpose of the structures
- Evaluate the covariance matrix (differences between individual coordinates and mean coordinates)
- Decompose it into a series of modes of covariance (3N-6 eigenvectors)

Principal component analysis

Output:

- Principal modes of conformational
- variations/differences between NMR models
- rearrangements/changes under different functional states
- dynamics/fluctuations observed in simulations

Average position vector <R_i> of atom i

 $\{R_1(t_1), R_1(t_2), R_1(t_3), \dots, R_1(t_m)\}$ for atom/residue 1

Average position vector for atom *i* over all trajectory $\langle \mathbf{R}_1 \rangle = (1/k) \sum_k \mathbf{R}_1(\mathbf{t}_k)$, where the summation is k = 1, m

Instantaneous fluctuation vector

 $\Delta \mathbf{R}_{1}(t_{3}) = \mathbf{R}_{1}(t_{3}) - \langle \mathbf{R}_{1} \rangle$

6/8/2016

R. K

RMSD with respect to starting structure **R(O)**

Instantaneous deviation for atom i

 $\Delta \mathbf{R}_{i}(t_{k}) = \mathbf{R}_{i}(t_{k}) - \mathbf{R}_{i}(0)$

Average deviation over all atoms, at a given time,

RMSD(t_k) = (1/N) $[\sum_{i} (\Delta \mathbf{R}_{i}(t_{k}) . \Delta \mathbf{R}_{i}(t_{k}))]^{1/2}$ where i = 1, N

Cross-correlations between fluctuations

Example: cross-correlations between fluctuation vectors of residues i and j (average over *m* snapshots/conformations)

$$<\Delta \mathbf{R}_{i} \cdot \Delta \mathbf{R}_{j} > = \Sigma_{k} [\Delta \mathbf{R}_{i}(\mathbf{t}_{k}) \cdot \Delta \mathbf{R}_{j}(\mathbf{t}_{k})] / m$$

For i = j, this reduces to mean-square fluctuation

<(
$$\Delta \mathbf{R}_{\mathrm{i}})^{2}$$
>

Covariance matrix (NxN)

 $\Delta \mathbf{R} = \mathbf{N}$ -dim vector of instantaneous fluctuations $\Delta \mathbf{R}_i$ for all residues ($1 \le i \le \mathbf{N}$)

 $< \Delta \mathbf{R}_1$. $\Delta \mathbf{R}_1 > =$ ms fluctuation of site 1 averaged over all *m* snapshots.

Cross-correlations between Components of fluctuation vectors

Example: cross-correlations between the X-component of R_i and Y component of R_i

$$\langle \Delta X_i \Delta Y_j \rangle = \Sigma_k [\Delta X_i(t_k) \Delta Y_j(t_k)] / m$$

To be organized in a 3x3 matrix as

6/8/2016

Covariance matrix (3Nx3N)

 $\mathbf{C}^{(ij)} = \begin{bmatrix} \left\langle \Delta x_i \Delta x_j \right\rangle & \left\langle \Delta x_i \Delta y_j \right\rangle & \left\langle \Delta x_i \Delta z_j \right\rangle \\ \left\langle \Delta y_i \Delta x_j \right\rangle & \left\langle \Delta y_i \Delta y_j \right\rangle & \left\langle \Delta y_i \Delta z_j \right\rangle \\ \left\langle \Delta z_i \Delta x_j \right\rangle & \left\langle \Delta z_i \Delta y_j \right\rangle & \left\langle \Delta z_i \Delta z_j \right\rangle \end{bmatrix}$ $\mathbf{C} = \mathbf{PSP}^T = \sum_{i=1}^{3N} \sigma_i \mathbf{p}^i \mathbf{p}^T$

Global motions inferred from theory and experiments

 \rightarrow PCA of the ensemble of resolved structures \rightarrow ANM analysis of a single structure from the ensemble

Global motions inferred from theory and experiments

Reference:

Bakan & Bahar (2009) PNAS 106, 14349-54

Soft modes enable functional movements

Bakan & Bahar (2009) PNAS 106, 14349-54.

Comparing PCA and ENM

Structures of HIV-1 RT Unbound Inhibitor bound DNA bound

Example: Comparing PCA and ENM

Structures of p38 MAPK Unbound Inhibitor bound Glucose bound Peptide bound

Different types of spring 'constants'

29

Tutorial: Normal Mode Wizard

- perform ANM, GNM, and PCA/EDA calculations
- draw customizable normal mode arrows
- make animations (sample conformations)
- make interactive squarefluctuations plots
- compare two structures and draw deformation arrows

Tutorial: Evol

- identification of conserved and coevolving residues
- Retrieving multiple sequence alignments (MSAs) from Pfam DB
- extremely fast MSA I/O functions
- Generation of conservation profiles (1D plots) and coevolution maps (2D plots)

Tutorial: collective Molecular Dynamics

- Sampling the conformational space near native state
- Identification of substates and accessible transitions
- Generating transition paths between substates
- Obtaining information on global dynamics at atomic resolution
- Generating the conformational energy landscape for the investigated system

Tutorial: membrANM

- Evaluating membrane proteins' dynamics in the presence of lipid bilayer, also modeled as an elastic network model, explicit or implicit
- Comparing protein global motions in the presence and absence of membrane
- Understanding mechanisms of protein-membrane remodeling or coupling to facilitate function

Global transitions

Global transitions

Single subunit showing the transport domain moving across the membrane

Global transitions

Single subunit showing the transport domain moving across the membrane

Tutorial: MechStiff

- Identification of the anisotropic response of the structure to external perturbations
- determination of the weak/strong pairs of interactions depending on the direction of the external force and the sites that are subjected to perturbation (uniaxial tension)
- Determination of the effective spring constant observed macroscopically, to be compared with data from Molecule Force Spectroscopy (SMFS) or atomic force microscopy (AFM).
- Evaluating the contributions of each mode to deformations along selected directions

Tutorial: Druggability

- Set up NAMD simulations
- Analyze trajectories to identify binding hot spots

Exploring binding with probe molecules

A few commands in ProDy

- Download NMR structures from PDB
- Calculate residue MSFs for each protein
- Determine ENM topology

Fine-tuning force constants

Learn more at prody.csb.pitt.edu

Rotations-Translations of Blocks

Smaller Hessian can be more easily diagonalized...

...and modes projected back into all-residue space

H: ANM Hessian (3 rows/cols per residue) P: Projection matrix from all-residue space to rigid block space H^{RTB}: RTB Hessian (no internal motions of blocks) V'^{AA}: Approximate ANM motions RTB.buildHessian()

Exploring structural transitions: Glutamate transporter

ANM predicts large radial motions of the trimer. Can we design a better model?

$$\mathbf{H_{ij}} = -\frac{\gamma}{\left(R_{ij}^{0}\right)^{2}} \begin{bmatrix} \left(x_{ij}^{0}\right)^{2} & x_{ij}^{0}y_{ij}^{0} & x_{ij}^{0}z_{ij}^{0} \\ x_{ij}^{0}y_{ij}^{0} & \left(y_{ij}^{0}\right)^{2} & y_{ij}^{0}z_{ij}^{0} \\ x_{ij}^{0}z_{ij}^{0} & y_{ij}^{0}z_{ij}^{0} & \left(z_{ij}^{0}\right)^{2} \end{bmatrix}$$

Altered radial force constants:

$$\begin{split} \mathbf{H}_{ij} &= - \left(R^{0}_{ij} \right)^{-2} \begin{bmatrix} \left(x^{0}_{ij} \sqrt{\gamma_{x}} \right)^{2} & x^{0}_{ij} y^{0}_{ij} \sqrt{\gamma_{x} \gamma_{y}} & x^{0}_{ij} z^{0}_{ij} \sqrt{\gamma_{x} \gamma_{y}} \\ x^{0}_{ij} y^{0}_{ij} \sqrt{\gamma_{x} \gamma_{y}} & \left(y^{0}_{ij} \sqrt{\gamma_{y}} \right)^{2} & y^{0}_{ij} z^{0}_{ij} \sqrt{\gamma_{y}} \\ x^{0}_{ij} z^{0}_{ij} \sqrt{\gamma_{x} \gamma_{z}} & y^{0}_{ij} z^{0}_{ij} \sqrt{\gamma_{y} \gamma_{z}} & \left(z^{0}_{ij} \sqrt{\gamma_{z}} \right)^{2} \\ x^{0}_{ij} y^{0}_{ij} & \left(x^{0}_{ij} \right)^{2} & x^{0}_{ij} y^{0}_{ij} & c x^{0}_{ij} z^{0}_{ij} \\ x^{0}_{ij} y^{0}_{ij} & \left(y^{0}_{ij} \right)^{2} & c y^{0}_{ij} z^{0}_{ij} \\ c x^{0}_{ij} z^{0}_{ij} & c y^{0}_{ij} z^{0}_{ij} & \left(c z^{0}_{ij} \right)^{2} \end{bmatrix} \end{split}$$

Lezon & Bahar. Biophys J 102 (2012).

Exploring structural transitions: Glutamate transporter

ANM: Large radial motions

imANM

System/environment approximation

$$V_{eff}(\mathbf{s}) = \frac{1}{2}\Delta \mathbf{s}^{T} (\mathbf{H}^{ss}) \Delta \mathbf{s}$$
$$\mathbf{H}^{ss} = \mathbf{H}^{ss} - \mathbf{H}^{SE} (\mathbf{H}^{EE})^{-1} \mathbf{H}^{ES}$$
$$\mathbf{reduceModel}(\mathbf{0})$$

45