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Full atomic simulations are computationally expensive 

Coarse-grained Elastic 
Network Models are fast 

Lane et al. 2013 
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Bakan et al. Bioinformatics 2011. 



Elastic Network Model 

• Useful for predicting global motions 
of proteins 

• Coarse-grained description (Cα-only 
usually) 

• Residue pairs are connected via 
elastic springs with unified force 
constants 

• You obtain a unique analytical 
solution for the spectrum of motion 
for each system – this is not a 
simulation 
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Growth in structural data 
Multiple structures for a single sequence 

Dynamics may be inferred 
from structural data. 

Nature, 15 May 2014. 
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Suite of tools 
Elastic Network Model  
(ANM/GNM) Analysis 
Principal component analysis of 
experimentally resolved structures 

Computational Drug Discovery 
Binding Site Prediction 
Affinity Estimation 

A VMD plugin 
Visualization of collective motions 
Animations/movies 
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Multiple Sequence Alignment 
Sequence conservation 
Correlated Mutation 



Modeling coupled protein-lipid 
dynamics 
Useful for membrane proteins 

ENM guided MD simulations 
Efficient sampling of energy 
landscape 
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Response to external forces 
Identification of mechanical stiffness 

Suite of tools 





Tutorial:  Elastic Network Models 

• Gaussian Network Model 
(GNM) 

• Anisotropic Network Model 
(ANM) 

• Normal Mode Analysis 
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Tutorial:  Trajectory Analysis 

• Fast processing of long 
trajectories 

• Enables comparison of 
MD trajectories and 
ENM predictions 
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Tutorial:  Ensemble Analysis 
• NMR Models 

• Homologous Proteins 

• Multiple X-ray 
Structures 

• Multimeric Proteins 
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A better comparison: 

  Consider more than 2 end points for a given 
structure, but all the known structures for a 
given protein, or the structurally resolved  

 

Ensemble of structures 
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Instantaneous fluctuation vector 
 
 ∆R1(t3) = R1(t3) - <R1> 

 

Average position vector <Ri> of atom i  
 
  
 
 

{R1(t1), R1(t2), R1(t3), ...... R1(tm)}  for atom/residue 1 
 
Average position vector for atom i over all trajectory  

<R1> = (1/k) Σk R1(tk),  where the summation is k = 1, m 
 







Cross-correlations between fluctuations 
 
  
 
 

Example: cross-correlations between fluctuation vectors of residues i and j 
(average over m snapshots/conformations) 
 
 

  <∆Ri . ∆Rj> =  Σk [∆Ri(tk) . ∆Rj(tk)] / m 
 
 For i = j, this reduces to mean-square fluctuation 
 

  <(∆Ri)2> 
 
 
 











Global motions inferred from  
theory and experiments 

 PCA of the ensemble of resolved structures 
 ANM analysis of a single structure from the ensemble 







Comparing PCA and ENM 
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Structures of HIV-1 RT 
Unbound 
Inhibitor bound 
DNA bound 

Bakan & Bahar. PNAS 106 (2009). 



Example: Comparing PCA and ENM 
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Bakan & Bahar. PNAS 106 (2009). 

Structures of p38 MAPK 
Unbound 
Inhibitor bound 
Glucose bound 
Peptide bound 





Tutorial:  Normal Mode Wizard 
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• perform ANM, GNM, and 
PCA/EDA calculations 

• draw customizable normal 
mode arrows 

• make animations (sample 
conformations) 

• make interactive square-
fluctuations plots 

• compare two structures and 
draw deformation arrows 



Tutorial:  Evol 
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• identification of conserved 
and coevolving residues 

• Retrieving multiple 
sequence alignments 
(MSAs) from Pfam DB 

• extremely fast MSA 
I/O functions 

• Generation of conservation 
profiles (1D plots) and co-
evolution maps (2D plots) 



Tutorial:  collective Molecular Dynamics 
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• Sampling the conformational 
space near native state  

• Identification of substates and 
accessible transitions 

• Generating transition paths 
between substates 

• Obtaining information on global 
dynamics at atomic resolution 

• Generating the conformational 
energy landscape for the 
investigated system 



Tutorial:  membrANM 
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• Evaluating membrane proteins’ 
dynamics in the presence of lipid 
bilayer, also modeled as an elastic 
network model, explicit or implicit 

• Comparing protein global motions 
in the presence and absence of 
membrane 

• Understanding mechanisms of 
protein-membrane remodeling or 
coupling to facilitate function 





Global transitions 

Reyes et al. Nature 462 (2009). 

Single subunit showing the 
transport domain moving 
across the membrane 
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Reyes et al. Nature 462 (2009). 
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Global transitions 

Single subunit showing the 
transport domain moving 
across the membrane 



Tutorial:  MechStiff 
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• Identification of the anisotropic response of 
the structure to external perturbations 

• determination of the weak/strong pairs of 
interactions depending on the direction of 
the external force and the sites that are 
subjected to perturbation (uniaxial tension) 

• Determination of the effective spring 
constant observed macroscopically, to be 
compared with data from Molecule Force 
Spectroscopy (SMFS) or atomic force 
microscopy (AFM). 

• Evaluating the contributions of each mode 
to deformations along selected directions 



Tutorial: Druggability 

• Set up NAMD 
simulations 

• Analyze trajectories to 
identify binding hot 
spots 
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Exploring binding with probe molecules 
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Bakan et al. J Chem Theor Comput (2012). 



A few commands in ProDy 

• Download NMR structures from PDB 

• Calculate residue MSFs for each protein 

• Determine ENM topology 

fetchPDB() 

calcMSF() 

buildHessian() 





Rotations-Translations of Blocks 
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HRTB 
P 

HAA PT 

(3N × 3N) 

(6Nb × 3N) 

(3N × 6Nb) 

(6Nb × 6Nb) 

H: ANM Hessian (3 rows/cols per residue) 
P: Projection matrix from all-residue 
space to rigid block space 
HRTB: RTB Hessian (no internal motions of 
blocks) 
V’AA: Approximate ANM motions 

VRTB 

PT V’AA 

Smaller Hessian can be more easily 
diagonalized... 

...and modes projected back into all-residue 
space 

Ming & Wall. PRL 95 (2005). 
Zheng & Brooks. Biophys J 89 (2005). 

RTB.buildHessian() 








