
•  Two conformations of P450-CYP2B4:  
 open (orange) with a large substrate (bifonazole, 
red), and 

  closed (light blue) with the smaller substrate            
4-(4-chlorophenyl) imidazole (blue) 

N. Tokuriki and D. S. Tawfik (2009) Science 324: 203-207  
See... 

Intrinsically accessible motions enable  
Optimal binding of substrate or drugs 

Conformational flexibility + 
sequence variability mediates 

substrate selectivity 



Sequence evolution 
an information-theoretic approach 
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Information entropy (Shannon, 1951 ) 

Mutual information (MI) 

for correlated mutations analysis (CMA) 



Mutual Information 
without the influence of phylogeny 

MIp -  to eliminate random noise and phylogenetic components 

Dunn, Wahl and Gloor (2008) Bioinformatics 24: 333-340  

MIp (i, j) = I(i, j) – APC 

APC = Average product correction  
 
= [ I(i, x) I(j, x) ]  / <I(i, j)> 
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where I(i, x) is the mean mutual information of column i = Σj I(i, j)  



HIV-1 protease correlated mutation 
analysis (CMA) 

Shi and Malik (2000) 

residue index 

MSA of HIV-1 
protease MI matrix Iij = I (i, j) 

reordered residue index 

spectral clustering 

4 
Dr. Ying Liu 

Liu,	  Eyal	  &	  Bahar	  (2008)	  Bioinforma)cs	  



MDR mutations distinguished by CMA 

CTLVGTAIHEMMHALGFLHEQNREDRDDWVR 
CDKFGIVVHELGHVVGFWHEHTRPDREDHVV 
CFRFGTVIHEFIHALGFYHAQSAYTRDDYVL 
NFTVGSLIHEIGHAFGLIHEHQRPDRDDYVI 
CLTYGTPIHELMHALGFFHEQNRHERDSYVR 
CDKFGIVVHELGHVVGFWHEHTRPDREKHVV 
CDKFGVVVHELGHVVGFWHEHTRPDRNEFVG 
CAYFGTIVHEIGHAIGFHHEQSRPDRDDYIN 
CVYHGIIQHELSHALGFYHEHTRSDRNKYVR 
CINSGTIIHEVLHALGVHHEQARADRDGYVT 

untreated 

treated by at least 
one drug 

Drug-resistant cluster 

Phylogenetic cluster 

low 

high 

CTLVGTAIHEMMHALGFLHEQNREDRDDWVR 
CDKFGIVVHELGHVVGFWHEHTRPDREDHVV 
CFRFGTVIHEFIHALGFYHAQSAYTRDDYVL 
NFTVGSLIHEIGHAFGLIHEHQRPDRDDYVI 
CLTYGTPIHELMHALGFFHEQNRHERDSYVR 
CDKFGIVVHELGHVVGFWHEHTRPDREKHVV 
CDKFGVVVHELGHVVGFWHEHTRPDRNEFVG 
CAYFGTIVHEIGHAIGFHHEQSRPDRDDYIN 
CVYHGIIQHELSHALGFYHEHTRSDRNKYVR 
CINSGTIIHEVLHALGVHHEQARADRDGYVT 

mobility profile 

reordered residue index 

reordered residue index 

MSA of HIV-1 protease 
Stanford HIV Drug Resistance Database  
http://hivdb.stanford.edu/ 
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Summary 
�  two groups of correlated mutation sites 

 

functional aspects Structural location structural dynamics 

phylogenetic exposed mobile 

multi-drug resistant dimerization interface restrained 

6 Liu,	  Eyal	  &	  Bahar	  (2008)	  Bioinforma)cs	  15,	  1243.	  



Questions: 
�  Are key mechanical sites (e.g. hinges) 

conserved? 
�  Is there any correlation between sequence 

variability and structural dynamics? 
�  How does the structure ensure substrate 

specificity and conformational adaptability? 

7 



1.	  Obtain	  
MSA	  

3.	  Find	  the	  
corresponding	  

sequence	  in	  MSA	  

4.MSA	  
refinement	  

5.	  Entropy/MI	  
calculaLon	  	  

Query	  Enzyme	  

Pfam	  DB	  

EMMHALGFLHEQNREDRDDWVR 
ELGHVVGFWHEHTRPDREDHVV 
EFIHALGFYHAQSAYTRDDYVL 
EIGHAFGLIHEHQRPDRDDYVI 
ELMHALGFFHEQNRHERDSYVR 
ELGHVVGFWHEHTRPDREKHVV 
ELGHVVGFWHEHTRPDRNEFVG 
EIGHAIGFHHEQSRPDRDDYIN 
ELSHALGFYHEHTRSDRNKYVR 
EVLHALGVHHEQARADRDGYVT 

mobility	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

CVKFLPRT------------TEQY-Y-- 
CVKFLPRT------------TEQY-Y-- 
CVRFAPRT------------NQRD-F-- 
---------------------------- 
CIQFTEYPLTS---------PPQD-H-- 
---------------------------- 
CVRFRDKK--P---------NDKY-W-- 

6.	  GNM	  
calculaLon	  

7.	  	  Comparison	  
	  
	  
	  

conservation/co-
evolution 

PDB	  

2.	  Obtain	  
structure	  

AIHEMMHALGFLHEQNREDRDD 

Next	  Enzyme	  

A systematic study of a set of enzymes 

Liu Y, Bahar I (2012) “Sequence Evolution Correlates with Structural Dynamics” Mol Biol Evol 9, 2253-63 



Evol 

9 http://www.csb.pitt.edu/prody/tutorials/evol_tutorial/index.html 



Correlation between sequence entropy & 
conformational mobility 
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 structural dynamics 

high 

low 

sequence entropy 

residue index 
sequence 
entropy 

uracil-DNA glycosylase (UDG) 

Liu Y, Bahar I (2012) “Sequence Evolution Correlates with Structural Dynamics” Mol Biol Evol 9, 2253-63 



Mobility increases with sequence entropy 

# 
of

 r
es

id
ue

s 

ef
fe

ct
iv

e 
m

ob
ili

ty
 

1000 

500 

information entropy 

total of 8,254 residues 

11 Liu  &  Bahar  Mol Biol Evol (2012)  
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Hinge sites are evolutionarily conserved  
 

despite their moderate-to-high exposure to environment 

Liu  &  Bahar  Mol Biol Evol (2012)  



Amino acids involved in intermolecular recognition are 
distinguished by their co-evolution propensities 

1.2 0.9 0.6 0.3 0 

276 

D183 

E182 

F279 

R276 

R282 

281 286 271 266 

Liu Y, Bahar I (2012) “Sequence Evolution Correlates with Structural Dynamics” Mol Biol Evol 9, 2253-63 



cathepsin B substrate 

residues involved in top 0.05% of 
I(i, j) values 

Amino acids involved in intermolecular recognition are 
distinguished by their high global mobility 

Liu Y, Bahar I (2012) “Sequence Evolution Correlates with Structural Dynamics” Mol Biol Evol 9, 2253-63 



Summary 
       Four types of functional sites 

�  two types of functional sites 
 

Functional site Mobility in 
global modes 

Sequence 
evolution 

Dominant 
Feature 

Chemical (catalytic, 
ligand binding) 

Minimal Conserved high fidelity, precision 

Core Minimal Conserved high stability 

Hinge sites  Minimal Conserved rotational flexibility 

Substrate recog-
nition (specific) 

High High co-evolution 
propensity 

adaptability 

Liu  &  Bahar  Mol Biol Evol (2012); Liu, Gierasch & Bahar, PLoS Comp Bio (2010) 



Mao W, Kaya C, Dutta A, Horovitz A, Bahar I (2015) 
Comparative Study of the Effectiveness and Limitations of Current Methods 
for Detecting Sequence Coevolution Bioinformatics pii: btv103PMID: 
25697822 

There are several methods for 
evaluating sequence co-evolution 

Four possible outcomes: 
 
-  True positive (TP) – correctly predicted to be a hit 
-  False positive (FP); predicted but it is a miss 
-  True negative (TN) –  correctly predicted to be a miss 
-  False negative (FN) – predicted as a miss, but is a hit 



Two criteria for assessing the 
performance of different methods 

�  Minimizing false positives 
(signals between non 
interacting proteins) 

�  Maximizing true positives 
(signals between contact 
making residues 

17 



Screening of large databases 

 
For testing 9 methods, including 

18 

   observed-minus-expected-squared ((OMES) (Kass and Horovitz, 2002)  
   statistical coupling analysis (SCA) (Halabi et al., 2009; Lockless and 

Ranganathan, 1999). 
   Direct Coupling Analysis (DCA or DI for Direct Information) (Morcos et 

al., 2011; Weigt et al., 2009),  
   Protein Sparse Inverse COVariance (PSICOV) (Jones et al., 2012), 



PSICOV and DI are the best 

19 
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Average performance of the nine methods based on two criteria, absence of intermolecular FPs (a), and fraction of 3D 
contact making pairs (b) among different subsets of top-ranking signals. The signals are classified to 3 groups: strong coevolution 
signals (0.1-0.5%), intermediate signals (0.5-5%) and relatively weak signals (5-20%), which also refer to relatively small, intermediate, and high 
coverage of coevolving pairs. PSICOV and DI outperform other methods in the strong coevolution region. For the intermediate signal, OMES 
and MIp exhibit performances similar to PSICOV and DI in panel a. MIp(S) shows the best performance in the weak signal regime. SCA and MI 
(and its shuffled version) have lower performance compared to all others for both criteria over the whole range. 



  Diffusion of signal obeys a Markov process 
 
 

Allosteric communication mechanisms 
explored by network models 

  The structure is modeled as a network 

Laplacian based manifold methods (Belkin & Niyogi) 

References 

  Network connectivity given by Γ  
 
     

Chennubhotla & Bahar Mol Systems Biology (2006); PLoS Comp Bio (2007) 



  
 
A discrete-time, discrete-state Markov process is defined by setting the conditional probability of 
signal transduction from  residue j to i as 
 

   

  mij = aij / dj  
 
   
   The conditional probability matrix M = {mij}, also called the Markov transition matrix, is 
 

   

  M = A D-1
 

 

M  completely defines the stochastics of information transfer over the network of residues. 
   

Markov Model of Network Communication 
Γ = D – A where A = connectivity/affinity matrix and D = diagonal  matrix of degrees 



Hitting time: a measure of communication efficiency between 
two endpoints 

Based on all possible pathways j 
i k 

P(t) = M P(0), where M = AD-1 is the conditional prob matrix for signal diffusion  



Fluctuations as determinant of communication 

Commute distance ~ <(ΔRij)2> 

Chennubhotla & Bahar (2007) PLoS Comp Bio 



Communication times 

K69

H48

N125

D

H48

W31

I104

B

E

C

11.2 Å

12.9 Å
21.6 Å

11.5 Å

Nadler, Lafon, Kevrekidis & Coifman (2005) Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck 
Operators, NIPS 18; Coifman et al (2005) PNAS 102, 7426. 

See also 

Distribution of Commute Times for Phospholipase A2 (1bk9) 

His48 ,Tyr52,  Asp99 – catalytic residues 
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Active sites are distinguished by effective communication properties  

Chennubhotla & Bahar (2007)  PLoS Comp Bio  



CONCLUSION 
  Proteins are designed to favor functional 

changes in their structure. Pre-existing soft 
modes facilitate substrate binding. 

  Collective mechanics/allosteric dynamics 
are mediated by conserved residues 

  The intrinsic motions confer enhanced 
flexibility at substrate recognition sites 

  Correlated mutations at recognition sites 
enable substrate specificity while conferring 
conformational adaptability 

  Accurate modeling of protein dynamics is 
essential to assessing target druggability 



How does complexity scale with size of the system? 

microtubules 
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Mechanics vs chemistry? 



DISCUSSION 
  Different tools for different time/length windows: MD cannot explore long-time 

processes for multimeric systems; ANM does not incorporate detailed atomic 
forces 
 
  Not all evolutionarily correlated sites refer to structural or dynamic correlations 

   Accurate modeling of protein dynamics is essential to computer-aided drug 
discovery, but not sufficient for quantitative evaluation of binding affinity 

  Druggability simulations identify druggable sites, but not the type of drugs that 
optimally bind those sites 
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