Rule-based modeling of CaMKII dynamics: Subunit exchange and beyond

Cihan Kaya

Why CaMKII?

One of the main drivers of NMDA-dependent synaptic plasticity

Why CaMKII?

One of the main drivers of NMDA-dependent synaptic plasticity

 Highly expressed compared to other kinases (at least 10 times) and connected to many signaling molecules.

Why CaMKII is important?

One of the main drivers of NMDA-dependent synaptic plasticity

 Highly expressed compared to other kinases (at least 10 times)¹ and connected to many signaling molecules.

• Structurally complex dodecamer with multiple phosphorylation and binding sites in addition to complexity from CaM.

CaMKII Structure

Mechanism of Action

Pepke et al., 2010, PLOS Comp Bio

Michalski and Loew, 2012, Phys Biol

Mechanism of Action

Autophosphorylation

CaMKII stimulation and T286-autophosphorylation

Combinatorial Complexity in Biochemical Interactions

Contact Map for molecules involved in EGFR signaling

Enumeration of receptor-containing species

Indirect Methods – Network Generation

S, A, B, C, SA, SB, SC, SAB, SAC, SBC, SABC

species

4 molecule types 3 rules

11 species 12 reactions

reactions

Graph enumeration

"For the CaMKII system, the size of the reaction network increases non-linearly (approximately exponentially) with holoenzyme size(...) A 2.53 GHz Intel Xeon processor took 6 hours to generate the network for a six-state pentamer model, and an exponential fit suggests it would take over 290 years to generate the network for a six-state, 10-subunit-holoenzyme model."

Michalski and Loew, 2012, Phys Biol

NFsim

Bistability of CaMKII

Michalski and Loew, 2012, Phys Biol

Michalski and Loew, 2012, Phys Biol Michalski, 2013, Biophys J

Calmodulin Trapping

Another mechanism to sustain activity

Mechanism

Activation dependent subunit exchange

Hcp1 blocks subunit exchange

Stratton et al, 2014, eLife

Mechanism

Kinase domain is required for subunit exchange

Active CaMKII exchange subunits regardless of Ca++/CaM

Suggested mechanism

Subunit exchange mechanism

Mechanism

• No decamer.

 Dodecamer and tetradecamer are equally distributed.

 Opening and closing are individual motions.

Suggested mechanism

Diffusion limited subunit exchange

closed tetradecamer

Bhattacharya et al, 2016, eLife

Baseline experiment

De Konnick and Schulman, 1998, Science

6 seconds pulse

Baseline experiment

200 ms pulses with total of 6 seconds

Baseline experiment

Variable pulse lengths and frequencies with total of 6 seconds

Fitting based on TIRF microscopy data

Two different fitting strategy

- Manual fitting
 - Slow
 - Non-analytic
 - Qualitative
 - Good for detecting parameter ranges
- BioNetFit
 - Genetic algorithms
 - Good for parallelization
 - Data quality?

Manual Fitting

Work in progress

• Fitting with dodecamer and trimer model (2 generations per day / Bridges).

What is next?

• Fitting to steady state properties based on Bradshaw et. al., 2003, PNAS.

What is next?

• LTP protocol with 5 ms Ca⁺⁺ pulses with 100 Hz for 1 seconds with varying Ca⁺⁺ pulse amplitudes.

10 seconds simulation

What is next?

• Bi-exponential behaviour can be fixed with subunit exchange

Future Direction

Volume Effects

- CaMKII is highly concentrated in PSD area.
- Diffusion of CaMKII is slow due to bulky nature of protein (~750 kDa)
- A strong variability in spine shapes may have an effect on activation.

