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Motivation

• Biological systems are complex 

• “Simple” underlying dynamics can be  
incredible costly to simulate directly 

• Need to look for ways to increase 
efficiency of computations 

• If rare events matter, how can we 
cope?
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A Weighted Ensemble is 
Just Repeated Resampling 

•Of any stochastic process: 

•Molecular dynamics (protein motion) 

•Chemical kinetics (cell signaling) 

•Branching processes (cancer 
modeling) 

•Agent based models (population 
dynamics)
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Ensembles: 
Weighted vs Unweighted



Spatial Stochastic 
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Toy Model
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Neuromuscular Junction



MATERIALS AND METHODS

Model geometry

Spatially realistic model geometries for MCell simulations can be
obtained in several ways, such as by reconstruction from electron micro-
scopy imagery (14) or by in silico methods using computer-aided design
or three-dimensional (3D) content creation software (15). The latter is a
powerful new approach for modeling complex biological structures that
allows for rapid creation of model geometries and thus complements tradi-
tional reconstructions from electron microscopy. We used Blender (16) to
create our model’s 3D mesh geometry in silico according to dimensions
based on published averages (17,18) (see Fig. 1). Our model included
26 synaptic vesicles of 50 nm diameter arranged in two double rows.
We marked triangular mesh tiles on the bottom of each synaptic vesicle
as putative Ca2þ-sensor sites. Similarly, mesh tiles in the trough between
vesicles were marked as putative VGCC sites at locations suggested by
published estimates (17–19). These marked tiles could then be populated
with Ca2þ-sensor sites or VGCCs as needed within MCell’s Model
Description Language (MDL). From Blender, meshes were exported
directly into MDL.

MCell simulations and algorithms

All simulations were carried out with MCell version 3.1 (rev. 788) with a
custom binary reaction data output format to facilitate data handling. For
each simulation condition (different numbers of Ca2þ-sensor sites on
vesicles, varying extracellular Ca2þ concentration, etc.), we averaged the
results over 10,000 separate MCell runs obtained via different random
number seeds. During each run we tracked the Ca2þ ions emerging from
individual VGCCs, their binding to Ca2þ buffer, and their binding to
Ca2þ-sensor sites on vesicles. Ca2þ ions that encountered the edges of
our model geometry were removed from the simulation to mimic their
disappearance into the adjacent presynaptic space. We used programs writ-
ten in Cþþ, Python, Lua, and Bash to analyze the data. All simulations

were run on the Salk machine at the Pittsburgh Supercomputing Center,
an SGI Altix 4700 shared-memory NUMA system with 144 Itanium2 pro-
cessors, cmist, an eight-core Intel Xeon E5472 machine, or a local desktop
with an Intel i7-980X CPU.

We previously described MCell’s simulation algorithms in detail (20,21).
In brief, in an MCell model, the membranes of cells and organelles are
represented by triangulated surface meshes. Brownian motion of diffusing
volume and surface molecules is simulated using optimized grid-free Brow-
nian dynamics random walk algorithms (21). Due to the inherently small
length scales present in our model (e.g., distances between VGCCs and syn-
aptic vesicles or between vesicles and the presynaptic membrane), we used
a small simulation time step of 10 ns and corresponding short diffusion step
lengths to allow for accurate spatial sampling (22).

Simulation of VGCCs and Ca2D influx

VGCCs in our model opened and closed according to a time-dependent
action potential waveform (Fig. 2 A) and were modeled via a four-state
kinetic scheme (three closed states and one open state; see Table 1 and inset
in Fig. 2 A). The rate constants between states were voltage dependent with
the following parameters (23):

a ¼ 0:06eðVmþ24Þ=14:5

b ¼ 1:7

eðVmþ34Þ=16:9 þ 1
:

Here, Vm(t) is the time-dependent membrane voltage corresponding to the
action potential waveform shown in Fig. 2 A. The time-dependent rate con-
stants a and b were precomputed and stored in separate text files that were
then read by MCell at the beginning of each simulation. Because the extra-
cellular Ca2þ concentration, [Ca2þ]ext, remains approximately constant
during an action potential, we approximated Ca2þ flux through open
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FIGURE 1 Overview of the frog NMJ model.
(A) Rendered simulation snapshot of the complete
AZ model. Visible are the two double rows of
synaptic vesicles (large red spheres) as well as
diffusing free and buffer-bound Ca2þ ions (small
colored spheres). For visual clarity, unbound buffer
sites are not shown. (B and C) Close-ups of synap-
tic vesicles, revealing the Ca2þ-sensor sites at their
bottom (the 40-sensor model is shown). The cylin-
drical glyphs directly in front of synaptic vesicles
represent closed or open VGCCs (red, closed;
yellow, open). Open VGCCs release Ca2þ ions
(yellow spheres) into the presynaptic space, which
can bind to endogenous buffer sites (cyan spheres;
only Ca2þ-bound buffer sites are shown) or sensor
sites on synaptic vesicles. Unbound and bound
Ca2þ-sensor sites on vesicles are colored black
and yellow, respectively. (D and E) Important
model dimensions (drawings are not to scale).

Biophysical Journal 104(12) 2751–2763
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• Calcium is released from bottom, diffuses, and can 
bind to synaptotagmin vesicles

• Model: if enough calcium bind to one vesicle, in the 
right pattern, a release event occurs
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Scaling Relationship

Prob ~ Ca4.67
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Realistic Geometry



Signaling Network

Pipeline: CellOrganizer → BioNetGen → MCell
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Figure 1: A compartmental model of the cell. The model couples simplified processes of signal tranduction, nuclear transport
and transcriptional regulation in a single eukaryotic cell. The system consists of four volume compartments: extracellular
(EC), cytosol (CP), endosomal (EN) and nuclear (NU). These are separated by three membrane surfaces: plasma (PM),
endosomal (EM) and nuclear (NM). The model is presented as a pathway that proceeds from ligand (L) binding to expression
of protein P2. The underlying rule-based model defines a set of 354 reactions between 78 species. Bonds between molecules
are shown as black lines. Black arrows between species represent reactions. Gray arrow labels correspond to the rule number
that describes the reaction (see model files at www.bionetgen.org/wsc09). Black integer-valued arrow labels represent
reaction stoichiometry (if not equal to unity). DNA promoters are pictured as a double helix icon.

the same molecule or another. Components may be associated with state variables with a finite set of possible values, each
representing a conformational or chemical state of a component, such as phosphorylation status. The name of the molecule
type is given first followed by a comma-separated list of its components in parenthesis. The allowed values of state variables
are indicated by ‘⇠’ followed by a value, as in L(r,d,loc⇠EC⇠EN), which declares a ligand molecule L that contains a
receptor binding component r, a dimerization component d, and a location component loc that takes on values EC or EN.

The seed species block defines the species initially present in the system. For example, the line

L(r,d,loc⇠EC) Lig0

specifies that the initial amount of free ligand monomers in EC is Lig0, a parameter defined in the parameters block.
Molecular complexes may also be specified, as in L(r,d!1,loc⇠EC).L(r,d!1,loc⇠EC), where a bond linking the
d components of each L molecule is indicated by a shared bond label, !1.

The reaction rules block contains rules that define how molecules interact. A rule is comprised of a set of reactant
patterns, a transformation arrow, a set of product patterns, and a rate law. A pattern is a set of molecules that select species
through a mapping operation (Blinov et al. 2006). The match of a molecule in a pattern to a molecule in a species depends
only on the components specified in the pattern (including wildcards), so that one pattern may select many different species.
The ‘+’ operator separates two reactant patterns that must map to distinct species (i.e., they may not reside in the same
complex). The ‘.’ operator separates molecules that are part of the same species. The transformation arrow may be either
unidirectional (->) or bidirectional (<->). Five basic types of operations are carried out by the rules in the example system
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Steady-State



In steady state, 
MFPT(A→B) = 1/Flux(A→B)
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Conclusions
 • Able to sample the rare events and full  

distributions for stochastic systems biology 
models over a wide range of complexity 

 • Speed-up over brute-force is dramatic  
enough encourage the design of more 
complex, more realistic models 

 • Long time-scale behavior can be  
extrapolated from short simulations: can 
bridge dynamics over multiple timescales
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