Using Weighted Ensemble Sampling in Spatial Stochastic Simulations

Rory Donovan MMBios Scientific Meeting 26/2/15

Motivation

- Biological systems are complex
- "Simple" underlying dynamics can be incredible costly to simulate directly
- Need to look for ways to increase efficiency of computations
- If rare events matter, how can we cope?

Resampling

Original Sample

Double Points, Halve Weights

Halve Points, Double Weights Do Both, In Different Regions

A Weighted Ensemble is Just Repeated Resampling

- Of any stochastic process:
 - Molecular dynamics (protein motion)
 - Chemical kinetics (cell signaling)
 - Branching processes (cancer modeling)
 - Agent based models (population dynamics)

Ensemble Sampling

Normalized Histogram

Weighted Ensemble Sampling

1/2

1/4

1/8

1/16

Ensembles: Weighted vs Unweighted

Spatial Stochastic Systems

Toy Model

Toy Model Results

Neuromuscular Junction

Neuromuscular Junction Model

NMJ Zoomed-In

- Calcium is released from bottom, diffuses, and can bind to synaptotagmin vesicles
- Model: if enough calcium bind to one vesicle, in the right pattern, a release event occurs

First Passage Times

Scaling Relationship

Realistic Geometry

Signaling Network

Pipeline: CellOrganizer → BioNetGen → MCell

Protein Histograms

Steady-State

In steady state,
MFPT(A→B) = 1/Flux(A→B)

First Passage Times

Pipeline: MM BioS

Conclusions

- Able to sample the rare events and full distributions for stochastic systems biology models over a wide range of complexity
- Speed-up over brute-force is dramatic enough encourage the design of more complex, more realistic models
- Long time-scale behavior can be extrapolated from short simulations: can bridge dynamics over multiple timescales

Thanks

- Collaborators:
 - Jose, Devin, Markus, Jim, Bob, Dan
- Funding:
 - SF Grant No. MCB-1119091
 - NIH Grant No. P41 GM103712
 - NIH Grant No. T32 EB009403
 - NIH Grant No. GM090033
 - NSF Expeditions in Computing Grant (Award No. 0926181)