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Sebastian Seung and Jeff Lichtman

definition of Connectomics

“an emerging field defined by high-throughput generation
of data about neural connectivity, and subsequent mining
of that data for knowledge about the brain. A
connectome is a summary of the structure of a neural
network, an annotated list of all synaptic connections
between the neurons inside a brain or brain region.”
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DTI “tractography” Human o o .
Connectome Project at Brainbow” stained neuropil
MRI 2 mm resolution at 300 nm optical resolution

Serial section electron
microscopy reconstruction
at 3-4 nm resolution

~10 MB/volume ~10 GB/mm? ~1 PB/mm3

1.3x10° mm3
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Mouse brain studies with
Jeff Lictman and Josh Morgan
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zebrafish studies with Florian
Engert and David Hildebrand

The picture shows a micrograph of atnnsgénk larval zebrafish
with pan-neuronal GCaMP2 expression. (potential cover art)
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ENGERT LAB

Harvard University \ Dc yartment of Molecular and Cellular Bwloux
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Scanning EM will be the first to
capture petascale datasets
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Recent description of automated
sectioning and SEM methods

e Hayworth K.J., Morgan J.L., Schalek R.,
Berger D.R., Hildebrand D.G.C. and
Lichtman J.W. (2014) Imaging ATUM
ultrathin section libraries with WaferMapper:
a multi-scale approach to EM reconstruction
of neural circuits. Front. Neural Circuits 8:68.
doi: 10.3389/fncir.2014.00068
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From: Imaging ATUM ultrathin section libraries with WaferMapper
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Hundreds of sections per wafer
with many wafers in large datasets
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Petascale connectomics will need

accelerated sectioning, imaging,
registration, analysis and S|mpI|f|ed

world-wide data sharing

This tissue ribbon is
collected by a
submerged conveyor belt

~ level adjusted via |
| this inlet tube |

Lichtman’s team at Harvard has developed the automated tape collecting
Ultramicrotome (ATLUM) and will deploy a 61-beam 1 Gpixel/sec SEM in 2014.
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Quote from: Imaging ATUM ultrathin section libraries with
WaferMapper: a multi-scale approach to EM reconstruction of
neural circuits by Kenneth J. Hayworth, Josh L. Morgan,
Richard Schalek, Daniel R. Berger, David G. C. Hildebrand and
Jeff W. Lichtman

Stitching and Alignment
Small EM volumes (<1 terabyte) can be aligned on a powerful
desktop computer using publicly available alignment software such as
the registration plugins for Fiji (Schindelin et al.,2012). However, the
stitching and alignment of high resolution images becomes
increasingly difficult as data sets become larger. The computational
power required to manipulate and process terabytes of images
requires hardware that is not standard in most labs and, while most
steps in alignment are amenable to parallelization, running these
steps in parallel often requires changes in code and expertise in
managing clusters. Because of these problems, aligning multi-
terabyte datasets is currently being done by only a few groups.
However, the recent production of many multi-terabyte EM volumes
has spurred efforts to scale up alignment tools to make it easier for
the broader research community to turn hundreds of terabytes of EM
Images into usable 3D tissue maps.
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Why do we need yet another
registration method?

\

e Need a “differential diagnosis” of the problem

e Higher speed (GPU and parallel cores are not enough)
1TB BigBrain ~250,000 hours = 1.1K/sec
AlignTK Bock/Reid 10TB ~100,000 hours = 30K/sec
SWIFT goal > 1M/sec per core

e More robust with less human intervention
BigBrain 1000 hr

e Better accuracy (both global and local)
e Pipeline operation over regions of large image sets
e Feed directly to analysis tools via VVFS
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Approaches to EM registration

e AlignTK — based primarily on Pearson
correlation and spring model relaxation to
iteratively converge on the global shape

e SWIFT — uses spatial frequency scaling
heuristics to obtain very high confidence
Image matching and applies Z direction
averaging and Kalman smoothing to fit a
global shape model
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WIFT inspiration
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Similarities to Lucky Imaging

http://www.ast.cam.ac.uk/research/instrumentation.surveys.and.projects/
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Similarity to adaptive optics
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From http://www.astro.virginia.edu/class/majewski/astr511/lectures/seeingcomp/seeingcomp.htmi
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Importance of signal whitening

e Conventional correlation is highly multimodal
e Phase only correlation is intolerant of deformation

e Adaptive whitening is typically unimodal & robust
Differential weighing of frequencies by useful content
Approaches the SNR of optimal matched filtering
Runs at speed similar to normal FFT correlation
Allows arrays of smaller FFT patch sizes
Can test different whitening levels with low added cost
Provides useful basis for further content analysis
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Graphical view of whitening
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FFT-based correlation algorithm

, M-1N-1 ,
D(m.n)=>">"g(t.7) gy +m, j+nr)
Y A i=0 7=0
U ; gl(ij)
= lae % % e 4 BT .
ym |— . A II _> . . gl(l,]) — g (Il,v)
el ¥ [T ' FET Complex conjugate
Gl(x,y) o L "y e : AN 7 ; A kS
ry O bt X glij) —— & v) - gluv) —
S M 22(ij)
’ el . . .
9 P o :/, Changing the sign of the image part
4
LGy | o/, D7)
Xm &=
T Niog, N |
Cross- D(m,n) 1

correlation

n

Lecture 5 on Fundame

https://nanohub.org/site/resources/2014/03/20569/slides/009.03.jpg
BiOS National Center for Multiscale Modeling of Biological Systems 20



N*log(N) complexity
FFTW Mega CPU ticks vs size
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Signal whitening in the SWIFT
approach matches difficult cases
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Global alignment will often need
additional anatomical information
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Out of order sections must be
resolved by detailed content

25
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The main SWIFT components

e IScale — produces pre-scaled image hierarchies
e SWIM - Signal Whitening Image Matching

e PSC-VB for 3D cut-plane viewing

e lavg — average image sets and make VB stacks
e MIR — Multi Image Rendering generates output
e remod — produce a "model” from an image set
e "qiv’ and modified “xv” for image review
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Examples using David
Hildebrand’s zebrafish dataset

e Imaged by the WaferMapper SEM methoc
e Nominally 18200 sections at overview scale
e 16000 reimaged 60nm/pixel 16-bit 10Kx8K
e 12546 imaged 20nm/pixel ROl 14Kx15K

e Also 2-photon optical
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Example SWII\/I Qperatlon 13460-13480
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Example SWIM operation 13460-13480

swim312 -i 3 51pgms/13460.pgm 5820 2960 5lpgms/13480.pgm 3820 2960

5.18008: 51lpgms/13460.pgm 5820 2960 51lpgms/13480.pgm 5848.06 2955.12
-4.87524 28.4756)

elapsed sec 0.364596

tickrate 2.99239e+09

targs 57195

tinit 53953755

tread 663131153 348443745 + 314687408

tprep 44142008 = 11551065 + 32590043

tffts 128881777 18853778 + 53670569 + 56357430

tmult 143644439

tpost 56839868
total 10910813615
nread 1 1

nft 1 3 ncalls 1
ticks/pixel 4161.89
pixels 262144

pixels/sec 718999
loopguit 1 threshquit O

niter 1: 1 1.45853
niter 2: 1 4.26346
niter 3: 1 25.5223
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Example SWIM operation 13460-13480
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Apodization vs window functions

APODIZING MASKS (H.R. SUITER)
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Need to produce anatomically
correct renditions to compare with
other specimens and Atlas data
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Lower left is
a particularly
stable point

e y % Tip and lower right
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zebrafish alignment in progress

Overlayimage Window Help







Example
MIR image
assembly
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Why triangles? A\

e Supported as a standard graphics primitive

e GPU triangles are highly optimized

e Any mapping of 3 points to 3 points is affine

e Over determined sets give least squares affine

e Affine transforms are simple matrix multiplies

e Affine of affine is affine

e Affine of Bezier is Bezier

e Local affine triangles blend into Bezier triangles
allowing long range quadratic and cubic curves

J a, a, a,|x
X a, al|x| |a, ]
= +| < b, b b, |lx
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il 0o 0 1
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Affine scale rotation & shear
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https://www.cs.auckland.ac.nz/courses/compsci773sl1c/lectures/ImageProcessing-html/topic2.htm
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Bezier curves

Linear interpolation Quadratic = parabolic arc
=N aP, H «F,
oP,
P, t=0 oP, Fa = *Fs
Cubic Fourth order

http://en.wikipedia.org/wiki/Bezier curve

mm BiOS National Center for Multiscale Modeling of Biological Systems 42



Curves extend to Bezier triangles

.. --‘1“"""-.-' N el
h%//www.gamasutra.com/view/feature/l31389/bézier_triangIes_and_npatches
A4
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Functions similar to MIR will be
Incorproated into the VVFS

Data Capture raw

M volumetric

data
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Stop for today.
More questions or discussion?
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