Topological domains in chromatin

Carl Kingsford

Carnegie Mellon University

Joint work with Darya Filippova, Rob Patro, Geet Duggal, Emre Sefer, Brad Solomon

Thanks

Darya Filippova

Rob Patro

Geet Duggal

Emre Sefer

Funding

NIH R01 HG007104, R21 HG006913, T32 EB009403 NSF CCF-1256087, CCF-1319998 Sloan Research Fellow (C.K.) Gordon and Betty Moore Foundation - Data Driven Discovery Investigator

Brad Solomon

Our Recent Open-Source Work on Large-Scale Genomics

Identifying topological domains in Hi-C

Finding confident structures in Hi-C

Counting kmers (part of Celera & Trinity Assemblers)

Finding rho-independent transcription terminators

Predicting protein function through network alignment

Network phylogenetics

Modeling network evolution

Constructing ribosome footprint profiles

Finding influenza reassortments

Reference-based sequence compression

De novo sequence compression

Sailfish: Ultra-fast Gene Expression Estimation

 Measuring gene expression is a fundamental way to uncover organism response to stimuli & to determine gene function

RNA-seq:

10m to 100m reads sampled from genes expressed during a condition

GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT AAACCAAAAACAAAAAAAACCAACAAAACCAAAAC GTGAGCTACCGCGCCCGGCCTATTTACTTTTCTTA CGTCTGCCCATAGGCGAAGATGCACACGTTGTATC GGTGACCTGGCGGGCACTACGCAATAGCAGCTGCC CGCGACTGTAGTCTCAGTTTCTTGGGAGGCTGAGG CCCTCCTTAACCTCTACTTCTACCTACGCCTAATC CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT CACGCCTGCAACAGCGTGAATGTGTGTACCACCGA GTGCCACCTCCCCGTCCCCGTGTTGCCAGGGGC GCCAAACTGGAACGTTTGCGAGAGAAGGATAAGCA CAGCTGAGGAAAGTACCCAGAGACTACACTACAGT GCCACCAGATCCTGGCGCTGTCAGAAGGCCTTGCA GACGTCCGGGAATTGCATCTGTTTTTAAGCCTAAT GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT AAACCAAAAACAAAAAAACCAACAAAACCAAAAC

Sailfish quickly determines the relative expression level of genes and their isoforms

Sailfish: Ultrafast Gene Expression Quantification

- Extremely parallelized
- Uses small data atoms rather than long sequences
- More tolerant of genetic variation between individuals

Salmon

- Estimates transcript expression from RNA-seq short reads
- Two-stage streaming variational Bayes / EM
- Novel lightweight alignment algorithms matches reads to transcripts

"Large-scale Salmon"

Goal: quantify expression for 100,000 conditions in a consistent way

Finding RNA-seq experiments expressing a given gene

Motivation: Which conditions express a novel gene → hypothesis about the function of that gene.

Time to search 2652 human blood, breast, and brain RNA-seq experiments for a 1000nt gene:

Approach does **not** require that the sequence be a known gene (can search for ncRNA, novel isoforms, new genes).

Things I'm not going to talk about (but ask me!)

- GHOST fast, accurate way to compare two large biological networks
- PARANA parsimonious estimation of network evolution (and prediction of interactions)

Genome Spatial Arrangement

S. Cerevisiae (Duan et al. '10)

Caulobacter crescentus (Umbarger et al.'11)

Human healthy vs. cancer (Baù et al. 'II)

Chromatin structure is important

- Measured in *Drosophila*, mouse, human,...
- Implicated in gene regulation and transcription
- Undergoes important changes during cell development
- Associated with cancer SCNA (e.g. Fudenberg, 2011)

"B" compartments
= more dense
regions

"A" compartments = more open and loosely compacted

Compact, contiguous regions = topological domains (TADs)

Why are TAD's Interesting?

- Stand out as highly-reproducible feature of Hi-C matrices
- Often conserved across species
- Seem to be a key building block of hierarchical organization of chromatin structure
- Play a crucial role in facilitating gene co-regulation and robustness of gene expression

Hi-C: High Resolution, Genome-Wide Structure

Chemically bond spatially close regions of genome across millions of cell nuclei

Perform high throughput sequencing to obtain code of nearby regions

Error correct, Normalize, & **Filter**

distance is related to 1/ frequency

Domain-finding Methods

- Directionality Index HMM (Dixon et al. 2012): imbalance between upstream and downstream interactions.
- Distance-Scaling (Sexton et al. 2012): insulation score between upstream and downstream fragments
- Armatus (Filippova, 2013): multiscale domains identified using a interaction density score for the block diagonal.
- HiCSeg (Levy-Leduc 2014): Maximum likelihood formulation to segment Hi-C matrix.
- Arrowhead (Rao et al. 2014): directionality bias at a particular distance d. Results in modified contact matrix that looks like it has arrowheads. Heuristically finds domains thereafter.

Armatus

(Filippova, Patro, Duggal, Kingsford. '14)

latest commit 50aada0a53 🔂

geetduggal authored on May 20

Armatus Features

- First program for multiscale analysis of domain structure
- Directly encodes/specifies quality of domain
- Handles uncertainty by generating multiple near-optimal solutions
- Order of magnitude more efficient than original singlescale analysis
- Efficient enough for highest-resolution data to date
- Requires only a single parameter

Domains at Multiple Scales

- Dixon et al. domains
- alternative domains

IMR90, chr I

How to find multiscale domains?

1. Find domains: dense regions of high-frequency interactions at different resolutions

2. Build consensus: pick the most <u>persistent</u> domains to form a single collection

How to find multiscale domains?

1. Find domains: dense non-overlapping square blocks along the diagonal

$$\max \sum_{\text{domains}} q(\text{domain})$$

2. <u>Build consensus</u>: pick domains across A - symmetric Hi-C matrix resolutions to form a single collection of non-overlapping blocks

$$\sum_{\substack{\text{domains at} \\ \text{various scales}}} p(\text{domain})$$

Score dense blocks on the diagonal

block score (can be negative)

mean weight as a function of block size and resolution

Resolution parameter

block weight
$$s(k,l,\gamma) = \frac{\sum_{g=k}^l \sum_{h=g+1}^l A_{gh}}{(l-k)^{\gamma}}$$
 reserved

resolution

$$\gamma=0$$
: denominator becomes

$$\gamma=1: \ |E|/|V|$$
 as used in [Goldberg 84]

big domains
$$\gamma=0: \quad \text{denominator becomes 1}$$

$$\gamma=1: \quad |E|/|V| \quad \text{as used in [Goldberg 84]}$$
 small domains
$$\gamma=2: \quad |E|/\binom{|V|}{2} \quad \text{similar to weighted edge density}$$

Resolution-Specific DP

End in a non-domain

$$\mathsf{OPT}_1'(l) = \max \left\{ \begin{array}{l} \max_{k < l} \{ \mathsf{OPT_D}(k-1) \} \\ \mathsf{OPT_D}(l), & \qquad \qquad \mathsf{End in a domain} \end{array} \right.$$

$$\mathsf{OPT_D}(l) = \max_{k < l} \{ \mathsf{OPT}_1'(k-1) + q'(k,l,\gamma) \},$$

$$q'(k, l, \gamma) = \begin{cases} q(k, l, \gamma) & \text{if } q(k, l, \gamma) > 0 \\ -\infty & \text{otherwise.} \end{cases}$$

Building a consensus of domains

domains = intervals, occurrence = weight

Weighted interval scheduling

$$\mathsf{OPT_C} = \max \begin{cases} \mathsf{OPT_C}(j-1) & \max_{\mathsf{domain}} j \text{ as non-domain} \\ \mathsf{OPT_C}(c(j)) + p(a_j, b_j, \Gamma) & \text{extend domain} \end{cases}$$

Distribution of mean interaction frequency

Enrichment for structure-related genomic signals in the boundaries

CTCF

- transcriptional regulation
- insulator activity
- regulation of chromatin architecture

boundary - a stretch of DNA between domains, 40-400Kbp

H3K27ac

- chromatin structure in eukaryotes
- form nucleosomes
- H3 most extensively modified

Enrichment for chromatin marks

More functional peaks in multiscale boundaries

Signal	Boundaries (Dixon)	Boundaries (Armatus)
CTCF (IMR90)	20%	44%
CTCF (mESC)	33%	72%
H3K4me3 (mESC)	30%	60%
H3K27ac (mESC)	23%	43%

%boundaries with at least one peak

Also: see peaks less often within multiscale domains

Analyses Enabled by High-quality Domains

Multiscale Domains are Hierarchically Organized

Collect all optimal and near optimal-domains across scales into one set

Determine the percentage of all sufficiently different domain pairs di, dj where di is *completely* contained within dj or vice-versa.

95% of all sufficiently different domain pairs are hierarchically organized.

70% of re-shuffled domains are hierarchically organized.

Hierarchy Holds in Single-Cell Data Too

(data from Nagano et al., 2013)

eQTLs Overlapping Regulatory Elements are Surprisingly **Spatially Close to their Target Genes**

2014)

Generative Model for Domain Formation From Histone Marks

GM log likelihood function

$$\underset{D}{\operatorname{argmax}} \log(P(D|W,H)) = \sum_{d=[s,e]\in \overline{D}} r_{se} x_{se} + \sum_{v\in V} E_{v}^{e} y_{v}$$

$$\overline{D} = \{[s,e] \mid s,e \in V, e-s \geq 1\}$$

$$r_{se} = E_{s}^{b} + E_{e}^{b} + \sum_{v=s+1}^{e-1} E_{v}^{i}$$

 x and y are indicator functions for when solution contains [s,e] and v not assigned to domain, respectively

Generative Model of Domain Boundaries From Genomic Markers

Table 1: Normalized coherence scores of various marker subsets

Allowed modifications (human IMR90 to IMR90)	Coherence score (Normalized)
28 histone modifications + Concave + Nonnegative *	1.00
28 histone modifications + Concave	0.99
28 histone modifications	0.97
H3K4me3, H3K79me2, H3K27ac, H3K9me3, H3K36me3, H4K20me1	0.94
H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave + Nonnegative	0.94
H3K36me3, $H3K4me1$, $H3K4me3$, $H3K9me3 + Concave$	0.93
H3K36me3, H3K4me1, H3K4me3, H3K9me3	0.92

Deconvolution: Estimating Structural Classes From Population Hi-C

- Assume each class composed of imperfect domains (bandwidth quasi-cliques)
- Two stage iterative algorithm:
 - 1. estimate class matrices, fixing λ_i
 - 2. estimate λ_i , fixing class matrices
- E. Sefer, G. Duggal, and C. Kingsford. Deconvolution Of Ensemble Chromatin Interaction Data Reveals The Latent Mixing Structures In Cell Subpopulations, RECOMB 2015.

Sketch of how deconvolution works

Bandwidth quasi-cliques:

Iterative 2-step method for optimizing weights (X) & domains (Y):

- 1: $Y = \{(i, 1) | i \in I\}$
- 2: while there is improvement in the objective (6) do
- 3: $X = \operatorname{argmin}_{A \in X_1} Q(A, Y)$
- 4: $Y = \operatorname{argmin}_{B \in Y} Q(X, B)$
- 5: end while

Deconvolution → **Seemly better boundaries**

(d) H3K4me1 CD4+

(b) H3K27ac CD4+

(e) H3K4me3 HeLa

(c) H3K9me3 CD4+

(f) CTCF HeLa

Armatus:

- Identifies domains at multiple scales
- Diverse in size and location, better enrichment
- Requires a single parameter.
 - no assumptions about domain or boundary size, directionality, distribution of frequency values
- Fast: $O(n^2)$
 - IMR90 all chromosomes, all scales + consensus -- < 40 min on an 2.3Ghz Intel Core i5, 8Gb RAM (Java)
- ullet Easily adapt block quality function $\,q(k,l,\gamma)\,$

Now: Working on methods to compare domains between cell types & species

Possible Renewal Contributions

- Relate spatial localization of transcription to (a) regulatory control, (b) phenotypes, (c) function more broadly [TR&D3]
 - May have some "structure-based" connection to [TR&DI]
- Tools for incorporating gene expression measurements into (a) pathway inference, (b) pathway evolution [TR&D2] (Sailfish/Salmon/SBT)
- Tools for comparing pathways and using pathway
 evolution to refine inferred pathways [TR&D2] (GHOST,
 PARANAI, PARANA2, NetArch, ...)

Thanks

Darya Filippova

Rob Patro

Geet Duggal

Emre Sefer

NIH R01 HG007104, R21 HG006913, T32 EB009403 NSF CCF-1256087, CCF-1319998 Sloan Research Fellow (C.K.) Gordon and Betty Moore Foundation - Data Driven Discovery Investigator

Brad Solomon

