MMBioS Meeting, Feb 2017

Model Checking Techniques for Systems Biology Modeling: A Case Study of Neurotransmission

Bing Liu

TRD1 & 3, DBP1

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh

Complex Systems

Model Checking

- Detect bugs in a variety of hardware and software applications
 - E.g. microprocessor, railway system, satellite-control software
- Many industrial successes
 - Intel, IBM, Apple, Microsoft, Motorola, Airbus, etc.

Model Checking

 An automated method to formally verify a system's behavior with respect to a set of properties

Edmund M. Clarke

Biological Machines

Cell cycle

ATP synthase

Microtubule assembly, vesicle transport driven by motor proteins, protein synthesis by ribosome, power station mitochondria

Systems Biology Modeling

- Mathematical formalisms
 - Ordinary Differential Equations
 - Petri Nets
 - Hybrid Automata
 - Markov chains (e.g. CTMC)
 - BioNetGen language
 - ...

ODE Example (protein association):

Mass action law

$$d[B]/dt = -v_1 + v_2 = k_1[A][B] - k_2[C]$$

 $v_2=k_2[C]$

Problems Faced

- Which hypothesis is more plausible?
- How to estimate unknown model parameters?
- Which component is critical to the dynamics?
- How to control to system to get a desired behavior?

Parameter Estimation

- Goal:
 - Find values of parameter so that model predictions can match experimental data (e.g. time serials, steady state)


```
krbNGF = 0.33, KmAkt = 0.16, kpRaf1 = 0.42 ... ... target

krbNGF = 0.49, KmAkt = 0.08, kpRaf1 = 0.97 ... ...

krbNGF = 0.88, KmAkt = 0.21, kpRaf1 = 0.05 ... ...
```

Optimization Approach

 Minimize the difference between model prediction and experimental data

Given data
$$\tilde{\mathbf{x}}(t_j)$$
, find \mathbf{k} to minimize $J(\mathbf{k}) = \sum_j ||\mathbf{x}(t_j;\mathbf{k}) - \tilde{\mathbf{x}}(t_j)||^2$

J: objective function

Example: Steepest Decent

• Update following the direction of steepest descent on the hyper-surface of the objective function

Many Challenges

- The curse of dimensionality
- Over-fitting
- Non-identifiable models
- Inherent uncertainty of data

Kim et al. 2007

Our Solution

- A statistical model checking (SMC) based approach
 - Encode training data as a bounded linear temporal logic (BLTL) formula
 - Evaluate candidate parameters using SMC
 - Perform global optimization (e.g. stochastic ranking evolutional strategy, SRES)

Our Solution

- Advantages
 - Utilize both quantitative and qualitative knowledge
 - Deal with uncertainty of the biological system/data
 - Good scalability due to the power of statistical testing

13

How to encode knowledge?

- E.g.
 - "ERKp level is between 10nM and 20nM"
 - "Caspase-3 level sustains once it reaches threshold 3onM"
- Temporal logic
 - A bounded linear temporal logic for biological properties (CSMB'13)

$$C3 \le 1nM\mathbf{U}^{10h}(\mathbf{F}^{\le 56h}(C3 \ge 30nM \land \mathbf{G}^{\le 44h}(C3 \ge 30nM)))$$

Amir Pnueli

BLTL

- A finite set of time points: $T = \{0,1,...,T\}$
- A trajectory is represented by $\sigma = (s_o, t_o), (s_1, t_1), \dots (s_T, t_T) \dots$

BLTL

- Atomic (elementary) proposition: $x \# y, \# \in \{>, <, =, \leq, \geq\}$
 - e.g. the current concentration level of *x* is higher than y nM

The formulas are built over operators $\land, \lor, \neg, \mathbf{O}, \mathbf{G}^{\leq t}, \mathbf{G}^{t}, \mathbf{F}^{\leq t}, \mathbf{F}^{t}, \mathbf{U}^{\leq t}, \mathbf{U}^{t}$ $\sigma(o) \models \varphi \lor \varphi', \, \sigma(o) \models \varphi \land \varphi', \, \sigma(o) \models \varphi, \, \sigma(o) \models \neg \varphi''$

$$\sigma(o) \models \varphi \lor \varphi', \, \sigma(o) \models \varphi \land \varphi', \, \sigma(o) \models \varphi, \, \sigma(o) \models \sim \varphi''$$

$$\sigma(o) \models O(\varphi)$$
, φ is true in the next state

$$\sigma(o) \models \varphi U^{\leq t} \varphi'$$
, φ will be true until φ' is true

$$\sigma(o) \models F^{\leq t}(\varphi')$$
, φ' will be true some time in the future

$$\sigma(o) \models G^{\leq t}(\phi)$$
, ϕ will be globally true in the future

$$\sigma(0) \models F^{t}(\varphi), \varphi$$
 is true at time point t

Probabilistic BLTL

- Example:
 - Caspase-3 level sustains once it reaches threshold 3onM with a probability at least 0.95

$$\Pr_{>0.95}(C3 \le 1nM\mathbf{U}^{10h}(\mathbf{F}^{\le 56h}(C3 \ge 30nM \land \mathbf{G}^{\le 44h}(C3 \ge 30nM))))$$

SMC of PBLTL formulas

• Check $M \models Pr_{\geq r}(\psi)$ using a sequential hypothesis test between

H0:
$$p \ge r + \delta$$
 and H1: $p \le r - \delta$

- Generate a sequence of sample trajectories: $\sigma_1, \sigma_2,...$
- Verify each trajectory and determine whether accept Ho or H1 based on Type I/II error bounds (α, β) :

$$q_m = \frac{[r - \delta]^{(\sum_{i=1}^m y_i)} [1 - [r - \delta]]^{(m - \sum_{i=1}^m y_i)}}{[r + \delta]^{(\sum_{i=1}^m y_i)} [1 - [r + \delta]]^{(m - \sum_{i=1}^m y_i)}}$$

Knowledge Encoding

Quantitative experimental data

$$\psi_i^t = \mathbf{F}^t (l_i^t \le x_i \land x_i \le u_i^t)$$

$$\psi_{\exp} = \bigwedge_{i \in O} (\bigwedge_{t \in T_i} \psi_i^t)$$

- Qualitative properties of the dynamics
 - E.g. transient/sustained activation, oscillatory behavior, bistable, ...
 - 'trend' formulas: ψ_{qlty}
- PBLTL formula: $Pr_{\geq r}(\psi_{exp} \wedge \psi_{glty})$

SMC based Parameter Estimation

- 1. Guess θ_l
- 2. Verify $\psi_{\text{exp}} \wedge \psi_{qlty}$ with the chosen strength
- 3. Compute $F(\theta_l)$
- 4. Terminate or make a new guess (based on search strategy e.g. SRES) and repeat step 1

$$F(\theta) = J_{qlty}^{+}(\theta) + \sum_{i \in O} \frac{J_{exp}^{i,+}}{J_{exp}^{i}}$$

Stochastic Ranking Evolutionary Strategy

- A variation of evolutionary strategy
- Select best λ solutions according to a probabilistic formula
- One of the best performing global method in parameter estimation (*Moles et al, Genome Res* 2003)

Benchmarking

- p53-induced apoptosis
 - 86 rules
 - 160 parameters (10 unknown)
- Synthetic training data
 - 4 species at 5 time points
 - 3 qualitative properties:
 - Mmd2 reaches its peak before p53
 - Sustained caspase-3 once its level reaches certain threshold
 - p53 pulses induce oscillatory behaviors of target genes

Liu et al, Sci Rep, 2014

Benchmarking

- Running time: 4.2 hours
- Reproduce quantitative data

Benchmarking

- Reproduce qualitative behaviors
 - Mmd2 reaches its peak after p53
 - Sustained caspase-3 once its level reaches certain threshold
 - p53 pulses induce oscillatory behaviors of target genes

Amphetamine (AMPH)

- Induce euphoria and hyperactivity by increasing extracellular dopamine
- AMPH enters DA neurons via DAT
- 'Block' VMAT2
- Enhance DA efflux
 - via PKC, CaMKII, G-protein pathways
- Stimulate DAT internalization
 - via Rho pathway

Amphetamine (AMPH)

- Induce euphoria and hyperactivity by increasing extracellular dopamine
- AMPH enters DA neurons via DAT
- 'Block' VMAT2
- Enhance DA efflux
 - via PKC, CaMKII, G-protein pathways
- Stimulate DAT internalization
 - via Rho pathway

Susan Amara, DBP1

A Kinetic Model

Training data

Wheeler et al, PNAS 2015

Training Data

Effect of N-terminal Serines Phosphorylation on DA efflux

Training Data

 Amperometric recordings for DA efflux after Gβγ stimulation in CHO cells expressing DAT

Model reproduces test data

Experimental data

Wheeler et al, PNAS 2015

Model Predictions

- Sensitivity analysis suggests that AMPH modulates DA(EC) level mainly through the DA efflux pathways, than DAT internalization
- Simultaneously block DAT internalization and DA efflux pathways synergistically enhance DA reuptake

A: DAT phosphorylation by CaMKKII*

B: Rho activation

Model Predictions

- How Rho mediated feedforward/back loops fine-tune AMPH induced DAT internalization
 - The role of the feedback loop is insignificant
 - The feedforward loop governs the time window of Rho activation

Conclusion

- A SMC based approach for the parameter estimation of rulebased models
- Utilize both quantitative and qualitative knowledge
- Deal with uncertainty of biological systems/data
- Good performance due to the power of statistical testing and online model checking

Our MC-based Techniques

System Representation

- DBN (Bioinformatic, 2012)
- ODEs (CMSB'13)
- Stochastic models (Sci Rep., 2014)
- Hybrid Automata (CMSB'14, HSCC'15, HSB'15)
- Boolean Network (CMSB'16)
- Rule-based models (BIBM'16)

Model Checking

- Statistical model checking
- Probabilistic model checking
- δ-decision model checking
- Symbolic model checking

SAT

Temporal Property

- Bounded Linear Temporal Logic
- Quantitative property
- Qualitative behaviors

Parameter estimation

Sensitivity analysis

Predict therapeutic strategies

echnology

Acknowledgements

University of Pittsburgh Ivet Bahar's Lab James R. Faeder's Lab

Carnegie Mellon University

Edmund M. Clarke's Lab

National University of Singapore P.S. Thiagarajan's Lab

Questions?

ODE Dynamics

We assume that:

$$x_i(t) \in [L_i, U_i]$$
, where $0 < L_i < U_i$

State space: $\mathbf{V} = [L_1, U_1] \times [L_2, U_2] \times ... [L_n, U_n] \subseteq \mathbf{R}_+^n$

$$INIT = [L_1^{init}, U_1^{init}] \times [L_2^{init}, L_2^{init}] \times ... [L_n^{init}, L_n^{init}]$$

$$f_i \in C^1$$
 for each i , hence $F : \mathbf{V} \to \mathbf{V} \in C^1$

As a result, for each $\mathbf{v} \in \mathbf{V}$, the ODE system will have a unique solution $\mathbf{X}_{\mathbf{v}}(t)$

We define:

flow $\Phi : \mathbf{R}_+ \times \mathbf{V} \to \mathbf{V}$ for arbitrary initial vector \mathbf{v}

$$\Phi(t, \mathbf{v}) = \mathbf{X}_{\mathbf{v}}(t)$$

Then $\Phi(t,\cdot) \in C^0$

Fixing a maximal time point T, we define a *trajectory* strating from $\mathbf{v} \in \mathbf{V}$ denoted $\sigma_{\mathbf{v}}$

$$\sigma_{\mathbf{v}}:[0,T] \to \mathbf{V}, \sigma_{\mathbf{v}}(t) = \Phi(t,\mathbf{v})$$

Behavior of our dynamical system is the set of trajectories:

$$BEH = \{ \sigma_{\mathbf{v}} \mid \mathbf{v} \in INIT \}$$

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}), \mathbf{x} = \{x_1, x_2, ..., x_n\}, \text{ and } F(\mathbf{x}(i)) = f_i$$

Case Studies

- Pathway models taken from BioModels database
- Nominal parameters
- Synthetic experimental data
- Qualitative trend

EGF-NGF Pathway

- ODE model (Brown et al. 2004)
 - 32 species
 - 48 parameters (20 unknown) freeEGFF
- Training data
 - 7 species, 9 time points
- Test data
 - 2 species, 9 time points

EGF-NGF Pathway

• Running time: 2.23 hours

Training data

Test data

Segmentation Clock Network

- ODE model (Goldbeter et al. 2008)
 - 22 species, 75 parameters (40 unknown)
- Training data
 - Time serials: Axin2 mRNA, 14 time points
 - Qualitative trend: 5 species, oscillatory behavior
 - $\mathbf{E.g.}(([LmRNA \le 0.4] \land (\mathbf{F}([LmRNA \ge 2.2] \land \mathbf{F}([LmRNA \le 0.4] \land (\mathbf{F}([LmRNA \ge 2.2] \land \mathbf{F}([LmRNA \le 0.4])))))))$
- Test data: Dusp6 protein, qualitative trend

Segmentation Clock Network

Running time: 2.2 hours

MLC Phosphorylation Pathway

- Regulates the contraction of endothelia cells
- ODE model (*Maeda et al* 2006)
 - 105 species, 197 parameters (100 unknown parameters)
- Training data
 - Time serials: 8 species, 12 time points
 - Qualitative trend: 2 species
- Test data
 - 2 species, 12 time points

MLC Phosphorylation Pathway

Running time: 50.67 hours

Training data

Test data

Parameter Estimation for BioNetGen

Current solutions: ptempest, BioNetFit, SBML tools

Our MC-based Techniques

System Representation

- DBN (Bioinformatic, 2012)
- ODEs (CMSB'13)

echnology

- Stochastic models (Sci Rep, 2014)
- Hybrid automata (CMSB'14, HSCC'15, HSB'15)
- Boolean network (CMSB'16)
- Rule-based models (BIBM'16)

Model Checking

- Statistical model checking
- Probabilistic model checking
- δ-decision model checking
- Symbolic model checking

Temporal Property

- Bounded Linear Temporal Logic

Parameter estimation

Sensitivity analysis

Predict therapeutic strategies

Analysis Methods

Biological Networks

Signaling Pathways

- Cell death
- Cell differentiation
- Cell proliferation
- Cell migration
-

Metabolic Pathways

Macrophage

Gene Regulatory Network

Model Parameters

- Two types of model parameters
 - Initial conditions
 - Rate constants
- Experimental measurements
 - Expensive
 - Not possible to measure all parameters
 - *In vitro* measurements may not reflect the actual physiological conditions in the cell (*Minton*, *J Biol Chem*, 2001)
 - Cell population-based measurements are not very accurate (*Kim & Price, Phys Rev Lett*, 2010)

On-the-fly Model Checking

- Model checking and generation of trace are coupled i.e. simulate as much as you need.
- Algorithm
 - At each time point we maintain the minimum subset of formulas that need to be true at the state.
 - Based on the simulation, we check the validity of the elements in this set to verify the property
 - Simulation is stopped once the formula has been asserted true/false by the model checking algorithm.
 - We repeat the process of generating simulations and verification until we run enough simulations to satisfy the Wald's statistical test.